Show simple item record

dc.contributor.authorARYA, HEMENDRAen_US
dc.contributor.authorSHIMPI, RPen_US
dc.contributor.authorNAIK, NKen_US
dc.date.accessioned2009-02-21T11:33:24Zen_US
dc.date.accessioned2011-11-25T17:24:59Zen_US
dc.date.accessioned2011-12-26T13:06:13Zen_US
dc.date.accessioned2011-12-27T05:54:01Z
dc.date.available2009-02-21T11:33:24Zen_US
dc.date.available2011-11-25T17:24:59Zen_US
dc.date.available2011-12-26T13:06:13Zen_US
dc.date.available2011-12-27T05:54:01Z
dc.date.issued2002en_US
dc.identifier.citationComposite Structures 56(1), 21-24en_US
dc.identifier.issn0263-8223en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0263-8223(01)00178-7en_US
dc.identifier.urihttp://hdl.handle.net/10054/741en_US
dc.identifier.urihttp://dspace.library.iitb.ac.in/xmlui/handle/10054/741en_US
dc.description.abstractA zigzag model for symmetric laminated beam is developed. This model uses a sine term to represent the nonlinear displacement field across the thickness as compared to a third order polynomial term in conventional theories. Transverse shear stress and strain are represented by a cosine term as compared to parabolic term. This model satisfies displacement and transverse shear stress continuity at the interface. Zero transverse shear stress boundary condition at the top and bottom of the beam are also satisfied. The numerical results indicates that the present model predicts very accurate results for displacement and stresses for symmetric cross-ply laminated beam, even for small length to thickness ratio. The results are also compared with a simplified theory of same class.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectLaminatesen_US
dc.subjectModellingen_US
dc.subjectShear Deformationen_US
dc.subjectStress Analysisen_US
dc.titleA zigzag model for laminated composite beamsen_US
dc.typeArticleen_US
dc.description.copyright© Elsevieren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record