A Taxonomy of QoS-
Aware, Adaptive Event-
Dissemination Middleware

Event broker networks — scalable versions of the publish—subscribe paradigm —

act as peer-to-peer overlays on broker nodes. Various frameworks support

different overlay topologies and routing schemes for event dissemination, but

attention is now turning to the nonfunctional attributes (such as quality of service)

of such systems. Although many research efforts are starting to address the need

for adaptation and QoS, no taxonomies or comprehensive surveys of adaptive

middleware, which provide support for service guarantees, exist yet. To tackle this

knowledge gap, the authors examine existing event-based middleware efforts,

focusing on quality of service and adaptation.

iddleware for event broker net-
M works (EBNs) both alleviates the

issues related to underlying plat-
form heterogeneity and provides a uni-
form application interface. A common
service interface that such middleware
provides is publish-subscribe,! a para-
digm in which producers publish infor-
mation and consumers subscribe to it. In
EBNs, information of interest is encapsu-
lated in events; on such networks, mid-
dleware stores and manages subscriptions
as well as routes events. This model’s
fully decoupled nature in terms of time,
space, and synchronization' makes it
highly suitable for large-scale distributed
applications. Middleware for event bro-

JULY e AUGUST 2007

ker networks is also known as event-
dissemination middleware (EDM).

To disseminate events, an EBN overlay
network? uses a subset of the underlying
existing physical network (an overlay link
itself is virtual but could consist of sever-
al physical links to the underlying
network). Therefore, middleware must
execute on each overlay node that has to
work cooperatively to accomplish its
functions. Such event-based architectures
appear in various domains, many of which
themselves require quality-of-service
(QoS) guarantees from the underlying
infrastructure. However, our survey of
existing efforts in research-and-industry-
based event dissemination middleware

1089-7801/07/$25.00 © 2007 IEEE

LA

Shruti P. Mahambre,
Madhu Kumar S.D.,
and Umesh Bellur
Indian Institute of Technology
Bombay

Published by the IEEE Computer Society

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

35

Dynamic Information Dissemination

Related Work in Information Dissemination

I n building our taxonomy, we first

researched all the existing work we
could find on event dissemination. The tax-
onomy presented by Rene Meier and col-
leagues' came closest to what we were
looking for: it deals with the classification of
existing event-based systems as a program-
ming paradigm and identifies fundamental
properties of event-based middleware.
Their taxonomy then classifies middleware
broadly based on event model and event serv-
ice criteria, with a further classification on
the basis of the middleware’s functional and
nonfunctional features and organization and
interaction model.

Although we reviewed core functionali-
ty, our focus is on quality-of-service guaran-
tees and adaptation in middleware rather
than with programming models for function-

al aspects of event-dissemination middle-
ware (EDM). We also extend Meier and col-
leagues’ definition of an event model to a
communication model by taking into account
event characteristics such as attributes and
hierarchical and compositional relationships
between event types. Patrick Eugster and
colleagues? also present a detailed survey of
event-based systems based on a common
denominator of the various modes of de-
coupling in asynchronous systems. Although
they discuss decoupling in three dimensions
(time, space, and synchronization), their
main focus is on implementing the issues
underlying publish—subscribe schemes.
Their survey forms the basis of our work.
Bruce Martin and colleagues® present a tax-
onomy as a hierarchy of questions and
answers about the features of distributed

computing systems (DCS). Although their
taxonomy isn’t specific to the publish—sub-
scribe paradigm, its comparison of existing
general-purpose DCSs provides a means of
classifying systems and also serves as a basis
for designing a DCS that offers novel fea-
ture combinations.

References
I. R. Meier and V. Cahill, “Taxonomy of Distributed

Event-Based Programming Systems,” The Comput-
er ., vol. 48, no. 5, 2005, pp. 602—626.

2. PTh. Eugster et al., “The Many Faces of
Publish/Subscribe,” ACM Computing Surveys, vol. 35,
no. 2, 2003, pp. | 14-131.

3. B.E. Martin, C.H. Pedersen, and]. Bedford-
Roberts, “An Object-Based Taxonomy for Distrib-
uted Computing Systems,” Computer, vol. 24, no.

8, 1991, pp. 17-27.

Core

. \&'
o\“é4
<
o?q’ Security
Load balancing
Reliability Adaptation
Fault tolerance
Ordering

Del Semantics

Overlay
routing
substrate

Figure I. Event-based architecture. Here, adaptive middleware
offers quality-of-service support.

36

indicates significant gaps in efforts to address these
needs; in fact, we found that few middleware
options®=® provide support for nonfunctional serv-
ice guarantees. Because a comprehensive survey of
current options doesn’t yet exist, this article offers
a review of existing event-based systems, classified
with a taxonomy of adaptive, event-based middle-
ware that provides QoS guarantees.

Middleware Architecture

As Figure 1 shows, event-based middleware has a
layered architecture. The core comprises mandato-
ry functional features, such as the event model, the
subscription scheme used to disseminate events,
and the overlay routing substrate. The layer on top

www.computer.org/internet/

of the core forms a set of optional services — that
is, the nonfunctional QoS guarantees the middle-
ware provides, such as reliability, delivery seman-
tics, message ordering, security, and fault
tolerance. QoS guarantees are orthogonal to mid-
dleware-supported core functions; the middle-
ware’s ability to reconfigure itself to ensure and
maintain a QoS agreement is its adaptability,
which can result in changes to the core’s subscrip-
tion scheme or overlay routing substrate.

The taxonomy we developed as part of our sur-
vey efforts provides a hierarchy of the identifying
features that an event-based system requires for
service guarantees. Specifically, it helps us identi-
fy groups of systems and lays out the functional
characteristics that come into play when provid-
ing QoS guarantees and support.

The Core

As Figure 2 shows, our taxonomy begins with a
differentiation between mandatory functional fea-
tures and QoS properties; as mentioned in the pre-
vious section, we can break the core down further
into an event model, overlay routing substrate, and
subscription scheme.

Event Model

In any EDM, subscribers transmit subscriptions in
the overlay network (filters sift out any non-
matching data elements from the event notifica-

IEEE INTERNET COMPUTING

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

tions), and publishers float advertisements about
the occurrence of a new event type.

An event model has three message types —
advertisement, notification, and subscription. The
model defines the attributes that uniquely identi-
fy an event based on that event’s name, type, or
temporal or persistent nature. An event can also
be characterized by the kind of data it stores — for
example, the data contained in an event could
have private or public access-control information
associated with it. Hermes® uses an object model
that represents every event as an object whose
attributes in turn define the event’s properties.
Jedi® uses pattern (or string) matching to identify
the events that occur in the system, whereas Siena®
models an event in the form of a triplet:
<{name, type,value>.

Events can also be related to one another by a
hierarchical or compositional relationship as
shown in Figure 3.

Event hierarchy. A new event type can inherit from
an existing event type, thus extending it and eventu-
ally building up a hierarchy and enabling polymor-
phic dispatch of events in the system. A subscriber
who subscribes to this sort of super type receives
notifications from all the event’s subtypes, as well as
from the super type itself. DAC? supports a topic-
based event hierarchy — that is, events in DAC are
represented in the form of topics. Subscribers express
their interest in these topics and receive notifications
about them along with notifications for all their
subtopics. In Hermes, every rendezvous node (which
is any node in the overlay network at which sub-
scriptions and notifications converge) is aware of its
descendent types, so inheritance routing supports
any subscriptions to parent rendezvous nodes.

Event composition. Composite events® provide a
higher level of abstraction for subscribers by
enabling complex event patterns; essentially, sub-
scribers don’t have to subscribe to all the primitive
events that make up the pattern and then perform
the detection of the composite themselves. Com-
posite events can be either temporal or spatial in
nature: temporal composite events are based on
time dependencies between primitive events,
whereas spatial composite events are a conjunc-
tive-disjunctive combination of individual events,
published based on a pattern of subscriptions
observed by the composite event-detection engine.
Hermes? supports a composite event service.

JULY e AUGUST 2007

Adaptive Event-Dissemination Middleware

‘ Event-based middleware ‘

®
‘ Quality of service ‘
v

‘ Event model ‘ ‘ Overlay routing substrate ‘ ‘

Subscription scheme

——— > and (all paths to be followed)
,,,,,,,, - and/or (all paths can be followed)
or (any one path to be followed)

Figure 2. The core. This part of the taxonomy focuses on the

middleware’s functional features.

Event model

® ®
‘ Event hierarchy ‘ ‘ Event composition

‘ Topic-based ‘ ‘ Type-based ‘ ‘ Temporal ‘ ‘ Spatial

—— > and (all paths to be followed)
,,,,,,,, - and/or (all paths can be followed)
or (any one path to be followed)

Figure 3. Event model taxonomy. This is the basis for classifying

event models in event-dissemination middleware.

‘ Overlay routing substrate ‘

¢ Y

)’

‘ Node lookup protocol H Underlay awareness H

Topology structure

Content- Underlay- Underlay- Hierarchical
addressable aware unaware
Acyclic
Flooding Underlay
style proximity-
aware
quality-
aware

—————— > and (all paths to be followed)
——— or (any one path to be followed)

Figure 4. Overlay routing substrate. These three properties form the

basis for categorizing overlay routing substrates

Overlay Routing Substrate

As Figure 4 shows, we can categorize EDMs on the
basis of their overlay routing substrate, which pro-
vides an [P-address-independent abstraction on a
physical underlay. Middleware architecture can
support one or multiple overlay network topolo-

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

37

Dynamic Information Dissemination

38

gies, which are useful for providing service guar-
antees. Such networks can also be deployed by
using end hosts that run overlay protocol software
that isn’t dependent on routers or ISPs.

Our taxonomy further categorizes overlay sub-
strates based on one of three properties: node
lookup protocol, underlay awareness, and topolog-
ical structures.

Node lookup protocol. By using the node lookup
protocol, we can classify overlay networks into
one of two types:®

e (Content-addressable overlays, in which network
topology and object content are related. Dis-
tributed hash table- (DHT-) based techniques’
convert object identifiers into overlay node
identifiers, thus guaranteeing object location
(if the object is present); search times are
bounded.

e Flooding-style overlays, in which object lookup
is based on time-to-live (TTL) controlled flood-
ing. A node looking for a particular key value
sends a request to all its known neighbors with
a specific TTL value. The neighbors reply to the
request by looking for a key match in their
local databases; if they find one, they reply.
Otherwise, they forward the request to their
known neighbors and increase the hop count.
If the hop count passes the TTL value, the for-
warding stops. Unless the TTL is set to a very
high value, the object might not be found, even
if it’s present.

Pastry'® and Chord! are content-addressable over-
lays, and Freenet!? is an example of flooding-style
overlays.

Underlay awareness. The overlay network can be
either aware or unaware of its underlying physi-
cal network topology:

e Underlay-unaware overlays are based on DHTs,
which use logical identifiers to identify over-
lay nodes and their neighbors. The overlay
assumes full network connectivity and doesn’t
measure physical network properties in the
overlay construction process. Chord" con-
structs underlay-unaware overlays.

e Underlay-aware overlays maintain correspon-
dence between physical and overlay networks.
The overlay construction strategy considers

www.computer.org/internet/

some of the underlying physical network’s prop-
erties, including path disjointedness (absence of
common nodes or physical links in different
overlay paths), hop count (number of physical
nodes between a pair of overlay nodes), band-
width, physical distance information, and fail-
ure statistics. This makes the overlay sensitive to
changes in the underlying physical network —
that is, the overlay dynamically adapts to
resource-based adaptation triggers.

We can further split underlay-aware overlay
networks into underlay-proximity-aware and
underlay-quality-aware overlays. Underlay-
proximity-aware overlays reflect only the physi-
cal nodes’ network proximity — when adding a
new node to an overlay, for example, a node
chooses the nearest neighbor based on the round-
trip time of a ping message broadcast to all nearby
nodes. No other underlay parameter is used in
overlay construction and maintenance; Pastry,'©
Medym,!? and Hermes® belong to this category.
With underlay-quality-aware overlays, we
extend the granularity of underlay awareness to
physical link quality, failure probabilities, node
degree, physical network diameter, and QoS guar-
antees. An underlying link’s failure statistics infor-
mation, for example, can help us select a reliable
path for an overlay link. Information regarding the
degree of physical nodes is useful when construct-
ing an overlay because it emphasizes the degree of
availability. To the best of our knowledge, no cur-
rently reported work uses underlay-quality-aware-
overlay networks in event-based middleware.

Topological structure. As part of our research, we
also identified the topologies on which most of
today’s event-based middleware are founded. These
topologies determine the formation of event-
dissemination trees when routing events. All event-
based middleware studied in this survey adhere to
one or a combination of the following topologies:®

e Hierarchical — nodes are connected in a hierar-
chy of parent-child relationships, hence they
form a tree-like structure. Each server in the
topology has several clients that could be pub-
lishers, subscribers, or intermediate brokers. The
parent server can receive notifications, advertise-
ments, and subscriptions from all of its clients,
but will only send back notifications. Jedi® uses a
hierarchical overlay topology for event dispatch.

IEEE INTERNET COMPUTING

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

e Acyclic — the communication between servers
is peer to peer. The links between servers aren’t
direct, so server connections produce an acyclic
graph that enables bidirectional flow of sub-
scriptions, advertisements, and notifications.

e Nonacyclic — removes the constraint of an
acyclic graph from acyclic topology, which
enables bidirectional communication between
two servers. (Multiple paths can also exist
between servers.) The topology is robust and
resilient to failure, but could also lead to cycles.

e Hybrid — supports a combination of topologies.
Siena® is a good example; some clusters of sub-
nets in Siena have very intense local-event
traffic. Visibility of events outside this cluster
is very low, hence a generic graph topology is
preferred inside the cluster and an acyclic
graph topology at the higher level.

Figure 5 shows how the various structural topologies
connect to clients and servers. Our taxonomy could
be extended to accommodate newer topologies.

Subscription Scheme

Subscribers must follow certain semantics — called
a subscription scheme — when specifying their
interest in an event; ditto publishers, when publish-
ing or advertising an event. In a topic-based sub-
scription scheme, participants publish events and
subscribe to individual topics, each of which is
identified by a keyword. Topics can overlap, leading
to a hierarchy as in DAC, but this differs from a
subject-based scheme, which was introduced by
TIBCO (www.tibco.com) and assumed a static sub-
ject hierarchy with paths described in dot notation.
Java Messaging Service (JMS; http://java.sun.
com/products/jms/docs.html) uses a topic-based
subscription scheme because it's much more flexi-
ble in its use of predicates.

In a content-based subscription scheme, sub-
scriptions are based on the event’s actual content,
which enables fine-grained search. Event proper-
ties could be internal attributes of the data struc-
tures that carry the events; Jedi,® Siena,® and
Elvin'* all use a content-based subscription
scheme. IBM’s Websphere MQ (www.ibm.com/red-
books) is a commercial message-queuing middle-
ware platform that supports both content- and
topic-based subscriptions. In JMS, clients can
address messages to a topic.

In a type-based subscription scheme, events are
classified according to their type,!®> which ties

JULY e AUGUST 2007

Adaptive Event-Dissemination Middleware

(@)
|. Client @ Server

Figure 5. Structural topologies.® Note the different connections
among nonacyclic, hierarchical, and acyclic topologies.

together commonalities in structure and content
as well as facilitates a closer integration between
language and middleware. IndiQoS* and Hermes
support type-based routing schemes. A somewhat
related approach (one that’s concept based!®)
enhances the event-notification service by
enabling it to pass semantic information across
components. A notification service that uses this
sort of concept-based approach can thus deliver
ready-to-process notifications to subscriber appli-
cations that require no further processing. Finally,
as its name suggests, the hybrid subscription
scheme combines some portions of all these rout-
ing schemes.

Quality of Service

As we saw in Figure 1, event-based middleware
can optionally provide support for QoS guarantees.
These service guarantees typically follow a pub-
lisher-offered, subscriber-requested pattern. The
EBN is tasked with ensuring that quality con-
straints are met during event delivery. As Figure 6
shows, we’ve identified five classes of service guar-
antees: latency, bandwidth, reliability, delivery
semantics, and message ordering.

Latency

Also known as time to delivery, latency is defined
as the time from when a publisher publishes an
event and a subscriber to that event receives noti-
fication that it’s available. The overlay network
must effectively reduce the overall latency of
event notifications in an EBN. If T, represents
transmission delay, P, represents propagation
delay (which is constant for a network), Q, repre-
sents buffering/queuing delay, e represent an
event of type 7, and b is the total number of nodes
occurring in the path between a publisher and
subscriber, then the latency L for a single notifi-
cation of an event of type 7 between a publisher
and subscriber is as follows:

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

KA

39

Dynamic Information Dissemination

‘ Quality of service ‘

i
[=g
o
=1
0
~
w
i)
=1
o
z
o
(=3
" >

Ordering

1 —,

Per subscriber

per event type

Per subscriber

»
all event types

I —
- Besteffort | | Random
— Atmostonce| |- Fifollifo |
- Atleastonce | |- Priority |
| Exactyonce |~ Casual |

'AII subscribers
one event type

— o Entire system

—————— > and (all paths to be followed)
,,,,,,,, -e and/or (all paths can be followed)

or (any one path to be followed)

Figure 6. Quality of service. Event-based middleware can provide
support for five classes of QoS guarantees: latency, bandwidth,
reliability, delivery semantics, and message ordering.

40

L{es) =b(Py) + 31 [i]+ i),

i=1

(1)

We calculate the latency as the summation of
the delay in propagation at all broker nodes and
the transmission and queuing delay at each
node’s buffer.

Bandwidth

Bandwidth represents the resources available
across a path during event transfer, which is
denoted by the number of events transferred
between the publisher and subscriber per time
unit. If a subscriber doesn’t specify a require-
ment, then the broker network assumes default
values, which provide the maximum possible
bandwidth available along a path. IndiQos* pro-
vides support for latency and bandwidth param-
eters by using netpipe, an infopipe that transfers
events between different hosts (infopipes are
software components connected to each other to
form an overlay network). The netpipe’s length
represents latency, and its width represents max-
imum bandwidth.

Reliability

The reliability attained at a subscriber node in the
EBN is the ratio of the notifications a subscriber
receives for an event type to the number of event

www.computer.org/internet/

types published.!” If n(e,) is the number of notifi-
cations received by a subscriber s for an event
type, and p(e,) is the number of publications of an
event type 7, then reliability R attained by sub-
scriber s is

-5

Using Equation 2, we can measure reliability at
different levels in an event-based system, includ-
ing per subscriber per event type, per subscriber
for all event types, all subscribers for a single event
type, and the entire system. Detailed definitions
appear elsewhere.!’

(2)

Delivery Semantics

Delivery semantics come into play at the last hop
(just before notification reaches a subscriber) and
depend on two values, network reliability and
support for duplicate messages. The lowest level
of a delivery guarantee is best effort, which means
no guarantee of reliability, and events can be
duplicated — that is, notifications are sent with-
out guarantee of delivery and with duplication.
The at most once delivery semantic ensures that
the subscriber receives a maximum of one notifi-
cation of an event type instance; if the subscriber
doesn’t receive any notification at all, then the
EBN isn’t reliable. The at least once delivery
semantic ensures that the subscriber receives at
least one notification of an event type instance (it
can still receive multiple notifications of the same
instance, though). Finally, the exactly once deliv-
ery semantic, ensures that the subscriber receives
a notification from exactly one event type
instance, but it could retain duplicates at interme-
diate nodes to guarantee reliability. Gryphon'®
follows exactly once delivery semantics, even dur-
ing periods of disconnection.

Message Ordering

An EBN can adopt a default temporal message
ordering in the form of first in/first out (FIFO) or
last in/first out (LIFO). If © is a time stamp associ-
ated with events e of type 7;,7; in the system, and n
is a notification message, then FIFO ordering is
expressed as shown in Equation 3, and LIFO mes-
sage ordering is expressed as in Equation 4:

G)[(z)]<®[()]:n[(Tl)j|—>n|:€(’l'j):| 3)

IEEE INTERNET COMPUTING

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

Ofe(r;)] < G)[e(rj)} =
ﬁ(n[e(ri)]an[e(rjﬂ). (4)

If the notifications aren’t ordered, we assume
that the default ordering is either random or
unordered. The EBN can also follow fotal ordering.
In this case, if an event type notification is meant
for multiple subscribers, then all the event type’s
notifications should be delivered in the same order
to all subscribers. Assuming that n and »’are noti-
fications of events received at subscribers s and s’
for event types 7; and 7;, we get'®

nfe(r;)] < n[e(rj)] =
ﬁ(n’[e(rj)] < n’[e(ri)]) .

Causal ordering is required if the order between
events is defined on the basis of a relative cause-
and-effect relationship (all events in Jedi are
causally ordered). We can express it as

e(r;) > e(r]-) = n[e(r,-)} - n[e(fj)] .

Message prioritization is a form of ordering in
which the publisher assigns priority numbers to
events when published. If p denotes the publication
of event e of type T T for example, then we would
express prioritization in an event-based system as

p[e(ri)] < p[e(rj)} = n[e(ri):l - n[e(rj)] (7)

If event 7;, has a higher priority than event 7;, then
notification of event 7; will be sent before event ;.

(5)

(6)

QoS Supportin EBMs

As the “Classification of Event-Based Middleware
Based on Core Properties” sidebar highlights, most
existing middleware doesn’t support, or provides
limited support for, service guarantees. Typically,
latency is assumed to be a default QoS parameter
during event notification; IndiQos is the only
option that explores latency and bandwidth as QoS
parameters in detail.

Most approaches support reliability, message
ordering, and delivery semantics on a limited scale,
even in industry middleware projects. The JMS API
ensures the exactly once delivery semantic and pro-
vides for different levels of reliability for those
applications that can afford to drop messages or
receive duplicates. IBM’s Websphere MQ claims to

JULY e AUGUST 2007

Adaptive Event-Dissemination Middleware

‘ Adaptation triggers ‘

Event model

Secure event
notification

Client movement

Publishing rate
variation

Urgent event
notification

| ——— or (any one path to be followed) |

Resource

Channel failure
Broker failure

Availability
variation

Figure 7. Adaptation triggers in middleware. The event-dissemination
middleware adapts to client-related adaptation trigger events (client
mobility), event-model-based trigger events (notification of an urgent
event), and resource-based trigger events (broker or channel failure).

be reliable, fault tolerant, scalable, and secure. Pre-
liminary work has explored QoS parameters in a
publish-subscribe domain,!® but neither option
formally defines any parameters. The routing algo-
rithms in Hermes use built-in fault tolerance fea-
tures that enable event brokers to recover after
failure, but Hermes doesn’t provide support for
client-specified reliability as a service guarantee.

Adaptation in Middleware

Certain events that occur after application deploy-
ment can result in the violation of committed serv-
ice guarantees, forcing the middleware to execute
a series of actions to ensure committed service
guarantees. Figure 7 shows how we classify these
adaptation trigger events, which involve the EDM
adapting to

e client-related trigger events (client mobility),

e event-model-based trigger events (notification
of an urgent event), and

e resource-based trigger events (broker or chan-
nel failure).

Client-mobility-triggered events occur when a
“disconnect” operation is followed by a “reconnect”
operation. During the period of disconnection, mul-
tiple subscriptions from different subscribers arrive
at the broker node to which the publisher was orig-
inally registered. Once the publisher reconnects to a
new broker node in the network, these subscriptions
are forwarded to that new broker, which in turn
triggers changes in intermediate brokers’ routing
tables and leads to traffic-load variations. Similar
issues arise when a subscriber disconnects from one
broker and reconnects to another one somewhere

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

41

Dynamic Information Dissemination

Classification of Event-Based Middleware Based on Core Properties

ur survey aims to classify event-

dissemination middleware (EDMs)
based on their functional characteristics
and the support they provide for quality-
of-service (QoS) parameters. We picked
the most popular EDMs available today as
a basis for this classification; Table | classi-

fies those efforts based on the functional
characteristics required for architecting
such middleware.

Jedi, Siena, Hermes, and IndiQoS pro-
vide partial support for some of the serv-
ice guarantees we identify in the main text.
Siena doesn’t provide support for any QoS

parameters, but describes an event model,
comprising single or multiple event servers,
with different overlay topologies for rout-
ing events. Table 2 gives us a clear insight
into the current level of support provided
by existing middleware for service guaran-
tees and adaptation.

Table 1. Classification of event-based middleware.

Middleware Event model Overlay routing substrate Subscription scheme
Elvin Events represented as strings; no event Underlay-unaware topology (static) Content based
composition or hierarchy
Jedi Object based (active objects and event Underlay-unaware hierarchical event dispatcher (static) Content based; pattern matching
dispatcher); no event hierarchy or composition of events
Siena Pattern-based model in the form of a triplet; Underlay-unaware acyclic, peer-to-peer, hierarchical, Content based
no event hierarchy or composition or hybrid topology (static)
Gryphon No event hierarchy or composition Underlay aware; hierarchical structure, with publisher hosting Content based
broker as root and subscriber hosting broker as leaf
Hermes Object based; supports event hierarchy Underlay aware; hybrid (static) Hybrid of type based and type
and composition and attribute based
Rebeca No event hierarchy or composition Underlay unaware; hierarchical, symmetrical, and Content based with covering and
acyclic-tree-like topology merging of filters
Medym No event hierarchy or composition Underlay-aware overlay (proximity) Content based
IndiQo$ Object based with QoS profiles; no event Underlay aware; hybrid (static) Type based

hierarchy or composition

Table 2. Classification of middleware based on support for quality of service and adaptation.

Event-based middleware Elvin Jedi Siena Gryphon Hermes Rebeca Medym IndiQoS$
QoS-supported parameters

Latency No No No No No No No Yes
Bandwidth No No No No No No No Yes
Reliability No No No No Yes No Yes No
Delivery semantics No No No Yes No No No No
Message ordering No Yes No No No No No No
Adaptation applicable at level

Event model No No No No No No No No
Overlay routing substrate No No No No Yes No Yes No
Subscription scheme No No No No Yes No Yes No
Adaptation triggers

Client movement No Yes Yes Yes No No No No
Publishing rate variation Yes Yes Yes Yes Yes Yes Yes No
Secure event notification No No No No No No No No
Urgent event notification No No No No No No No No
Link failure No No No Yes No No Yes No
Broker failure No No No No Yes No Yes No
Availability variation No No No No No No No No

42

www.computer.org/internet/

IEEE INTERNET COMPUTING

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

Adaptive Event-Dissemination Middleware

Table |. Classification of quality of service and adaptation triggers.

QoS parameters Latency
Adaptation trigger (client mobility)

(lient movement Yes
Publishing rate variation Yes
Adaptation trigger (event model)

Secure event notification No
Urgent event notification Yes
Adaptation trigger (resource variability)

Link failure Yes
Broker failure Yes
Availability variation Yes

else in the network. Modern distributed applications
allow simultaneous mobility of both subscribers
and publishers, but this also triggers changes and
necessitates adaptive behavior on the EDM'’s part.
The service guarantees affected here include laten-
cy, bandwidth, and reliability.

Changes in event frequency can increase or
decrease traffic on communication channels as
well. If an event’s frequency of occurrence increas-
es beyond a threshold (the buffer space available
at the broker node or the communication channels’
bandwidth), then buffer overflows, traffic conges-
tion, or communication delay can occur; this is
commonly called load unbalancing. Similarly,
when the publishing rate decreases, some channels
can become relatively free, which means they can
invite more traffic through those links; this is com-
monly called load redistribution. This trigger also
affects latency, bandwidth, and reliability.

Adaptation triggers related to an event model
typically fall into one of two categories: secure event
notifications and urgent event notifications. In the
former, event notifications defined as secure are
routed through specific brokers only, which have
defined encryption rules. In the latter, an event can
have a TTL value associated with it that says event
notification is valid only if delivered to the client
during the TTL period. Both of these event notifica-
tions trigger the discovery of express paths (or alter-
nate paths that can route the event within a specified
TTL). The service guarantees that event-model trig-
gers affect are latency and event ordering,.

Adaptation triggers related to changes in
resource availability also fall into one of two cat-
egories: link or broker failure and resource avail-
ability variation. If a link or broker fails, the result
is no delivery of the events routed through that

JULY e AUGUST 2007

Bandwidth Reliability Ordering
Yes Yes No
Yes Yes No
No No No
No No Yes
Yes Yes No
Yes Yes No
Yes Yes No

link or broker. Once the failure is detected, the
middleware must establish alternate paths to the
disrupted destinations. The service guarantees that
this trigger affects are latency, bandwidth, and reli-
ability. Resource availability variations, such as
introduction of a high-bandwidth link, an increase
in a broker node’s buffer size, and withdrawal of a
high-speed link in the physical network, might
change the event-dissemination trees that were
based on the resource availability at that point in
time. The service guarantees this trigger affects are
latency, bandwidth, and reliability.

Table 1 summarizes the QoS parameters direct-
ly affected as a result of adaptation triggers in
event-based middleware.

t’s apparent from this survey that providing

service guarantees in event-based middleware
is still in its nascent stages: most existing mid-
dleware don’t fully support any of the QoS
parameters we identified. Although researchers
have studied some parameters (such as latency)
individually, no one has yet identified and
resolved the issues that arise from the interplay
of QoS parameters.

Another area rich in research potential appears
to be that of dynamic adaptation. This area involves
challenges such as identifying the triggers that cause
adaptation, dynamically reconfiguring the topolo-
gy to ensure service guarantees, extending event-
dissemination algorithms, and exploring client
mobility in more detail. Adaptive load distribution
and resilience to path outages in EBNs are also top-
ics that have been touched on only lightly so far.

Our ongoing work deals with the development
of EDM that adapts to resource failure triggers and

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

Delivery semantics

No
No

No
No

No
No
No

43

Dynamic Information Dissemination

44

provides reliable routing in the face of such fail-
ures. We're also putting together a comprehensive
QoS model for broker networks. An EDM with
these adaptive and reliable properties would be
immensely useful for the development and deploy-
ment of self-stabililizing, distributed, asynchro-

nous applications on the Internet.

M

References

1.

10.

11.

12.

13.

P.Th. Eugster et al. “The Many Faces of Publish/Subscribe,”
ACM Computing Surveys, vol. 35, no. 2, 2003, pp. 114-131.

. P. Pietzuch and J. Bacon, “Peer-to-Peer Overlay Broker Net-

works in an Event Based Middleware,” Proc. 2nd Int’l Conf.
Distributed Event Based Systems, IEEE CS Press, 2003, pp. 1-8.

. P. Pietzuch, Hermes: A Scalable Event-Based Middleware,

PhD thesis, Queens College, Univ. of Cambridge, UK, 2004.

. F. Araujo and L. Rodrigues, “On QoS-Aware Publish Sub-

scribe,” Proc. 22nd Int’l Conf. Distributed Computing Sys-
tems Workshops, IEEE CS Press, 2003, pp. 511- 515.

. G. Cugola, E.D. Nitta, and A. Fuggetta, “The JEDI Event-

Based Infrastructure and Its Application to the Develop-
ment of OPSS WEMS,” IEEE Trans. Software Eng., vol. 27,
no. 9, 2001, pp. 827-850.

. A. Carzaniga, Architectures for an Event Notification Ser-

vice Scalable to Wide-Area Networks, PhD thesis, Dept. of
Computer Science, Politecnico di Milano, Italy, 1998.

. P.Th. Eugster, R. Guerraoui, and J. Sventek, “Distributed

Asynchronous Collections: Abstractions for Publish/
Subscribe Interaction,” Proc. 14th European Conf. Object-
Oriented Programming, Springer-Verlag, 2000, pp. 252-276.

. D. Doval and D. O’Mahony, “Overlay Networks: A Scalable

Alternative for P2P,” IEEE Internet Computing, vol. 7, no. 4,
2003, pp. 79-82.

. S. Rhea et al., “OpenDHT: A Public DHT Service and Its

Uses,” Proc. 2005 Conf. Applications, Technologies, Archi-
tectures, and Protocols for Computer Comm., ACM Press,
2005, pp. 73-84.

A. Rowstron and P. Druschel, “Pastry: Scalable, Decentral-
ized Object Location and Routing for Large-Scale Peer-to-
Peer Systems,” Proc. 18th IFIP/ACM Int’l Conf. Distributed
Systems Platforms, ACM Press, 2001, pp. 329-350.

L. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications,” Proc. ACM SIGCOMM 01
Conf., ACM Press, 2001, pp. 149-160.

L. Clarke et al., “FreeNet: A Distributed Anonymous Infor-
mation Storage and Retrieval System,” Proc. Int’l Work-
shop on Design Issues in Anonymity and Observability
2000, LNCS 2009/2001, Springer-Verlag, 2000, pp. 46-66.
F. Cao and J.P. Singh, “MEDYM: Match-Early and Dynam-
ic Multicast for Content-Based Publish-Subscribe Service
Networks,” Proc. 6th Int’l Conf. Middleware, LNCS 3790,
2005, pp. 292-313.

www.computer.org/internet/

14.

15.

16.

17.

18.

19.

L. Clarke et al., “Elvin Has Left the Building: A Publish/Sub-
scribe Notification Service with Quenching,” Proc. AUUG
Technical Conf. ‘97, 1997; www.elvin.org/papers/auug97/
auug97.html.

P.Th. Eugster, R. Guerraoui, and C.H. Damm, “On Objects
and Events,” Proc. 16th ACM SIGPLAN Conf. Object-Ori-
ented Programming, Systems, Languages, and Applications,
ACM Press, 2001, pp. 254-269.

M. Cilia et al., “Dealing with Heterogeneous Data in
Pub/Sub Systems: The Concept-Based Approach,” Proc. 3rd
Int’l Workshop on Distributed Event-Based Systems, IEE
Press, 2004, pp. 26-31.

S.P. Mahambre and U. Bellur, “Reliable Routing of Event
Notifications over P2P Overlay Routing Substrate in
Event Based Middleware,” to be published in Proc. 4th
Int’l Workshop on Hot Topics in P2P Systems (IPDPS 07),
IEEE Press, 2007.

S. Bhola et al., “Exactly-Once Delivery in a Content-Based
Publish-Subscribe System,” Proc. Int’l Conf. Dependable
Systems and Networks, IEEE CS Press, 2002, pp. 7-16.

S. Behnel, L. Fiege, and G. Muhl, “On Quality-of-Service
and Publish/Subscribe,” Proc. 5th Int’l Workshop Distrib-
uted Event-Based Systems, IEEE CS Press, 2006; www.kbs.
cs.tu-berlin.de/publications/fulltext/DEBS2006_1.pdf.

Shruti P. Mahambre is a PhD student in the Department of

Computer Science and Engineering at the Indian Institute
of Technology, Bombay. Her research interests include QoS
issues in event-based middleware, P2P overlay networks,
and publish-subscribe models. Mahambre is a student
member of the IEEE Computer Society and the Computer
Society of India. Contact her at shruti@cse.iitb.ac.in.

Madhu Kumar S.D. is a senior lecturer in the Department of

Computer Engineering at the National Institute of Technol-
ogy Calicut, India. His research interests are in distributed
computing and middleware systems. Kumar is currently
pursuing a PhD in computer science and engineering at IIT
Bombay. He is a life member of the Indian Society for
Technical Education, a member of the IEEE, and an asso-
ciate member of the Computer Society of India. Contact
him at madhu@cse.iitb.ac.in.

Umesh Bellur is an associate professor in the Department of

Computer Science and Engineering at IIT Bombay. His
research interests include distributed systems such as those
created by P2P overlays, sensor networks, and application
networks, semantic matchmaking algorithms in service-
oriented architectures, and autonomic computing. Bellur
has a PhD in computer engineering from Syracuse Univer-
sity. He is a member of the ACM and the IEEE. Contact him
at umesh@cse.iitb.ac.in.

IEEE INTERNET COMPUTING

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 2, 2009 at 01:34 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

