Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/xmlui/handle/123456789/19128
Title: Non-intrusive dynamic measurements of nanofluid-based heat transfer phenomena under thermally developing flow regime in the context of compact channels
Authors: RAJPUT, NS
SRIVASTAVA, A
Keywords: Dilute Nanofluids
Alumina/Water Nanofluid
Temperature-Dependence
Nanoparticle Migration
Vertical Microchannel
Brownian-Motion
Conductivity
Convection
Fluids
Al2o3
Issue Date: 2016
Publisher: ELSEVIER SCIENCE INC
Citation: EXPERIMENTAL THERMAL AND FLUID SCIENCE,74,271-285
Abstract: Laser interferometry-based forced convective heat transfer experiments in the context of compact channels using nanofluids are reported. Experiments have been carried out under thermally-developing flow conditions for a range of Reynolds numbers. De-ionized water and alumina/water-based dilute nanofluids have been employed as the coolant medium. The nanofluid-based experiments employ three volumetric concentrations of 0.01%, 0.03% and 0.05%. Projection data of the convective fields have been recorded using a Mach-Zehnder interferometer. Phenomena such as thermal boundary layer profiles and thickness of thermal boundary layer have been interpreted based on the infinite fringe setting mode of the interferometer, while the quantitative information in the form of whole-field temperature distributions and heat transfer coefficients have been retrieved from the wedge fringe setting. Effects of increasing Reynolds numbers and volumetric concentrations of nanofluids on thermal boundary layer profiles and the resultant heat transfer rates have been investigated. Results of the experiments carried out at low Reynolds number (Re < 513) reveal that the thermal boundary layer profiles are nearly insensitive to the changes in the concentrations of dilute nanofluids, while a significant enhancement in the heat transfer coefficient is seen as the concentrations of nanofluid is increased. On other hand, at higher Reynolds numbers, increasing concentrations of dilute nanofluids leads to a considerable increase in the thickness of thermal boundary layer that is accompanied with a mild deterioration in the heat transfer rates. Based on the primary findings of the experiments, that are purely non-intrusive in nature, various plausible mechanisms that govern the heat transfer characteristics of dilute nanofluids have been discussed. (C) 2016 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.expthermflusci.2015.12.018
http://localhost:8080/xmlui/handle/123456789/19128
ISSN: 0894-1777
1879-2286
Appears in Collections:Article

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.