DSpace
 

DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/10054/9407

Title: Gene expression profile analysis using discrimination and fuzzy classification methods
Authors: KAPIL, A
GUDI, RD
NORONHA, SB
Keywords: patterns
Issue Date: 2006
Publisher: JOHN WILEY & SONS INC
Citation: ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 1(1-2), 110-121
Abstract: There is a huge incentive for gene expression analysis and identification of biologically meaningful clusters from microarray data. However, the high dimensionality of the data poses challenges for this task. Here, to reduce this problem of irrelevant dimensions, we consider three different projection methods, viz. principal components analysis (PCA), correspondence analysis (CA), and multiple discriminant analysis (DA). To account for the possibility of pleiotropy, where the expression of certain genes may be related to more than one phenotypical condition, we use fuzzy clustering on the lower dimensional space generated by PCA, CA, and DA. Fuzzy clustering permits partial belonging of an attribute, such as gene expression, to different functionalities and hence is eminently suited for this task. To determine the optimum number of clusters, we evaluate various cluster validity indices. In this paper, we compare these methodologies when applied to the data generated by a genetic network simulator (eXPatGen) and also to the experimental micro array data available for yeast S. cerevisiae. (C) 2006 .
URI: http://dx.doi.org/10.1002/apj.12
http://dspace.library.iitb.ac.in/xmlui/handle/10054/9407
http://hdl.handle.net/10054/9407
ISSN: 1932-2143
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback