DSpace
 

DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/10054/9175

Title: Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators
Authors: SINGH, V
SENGUPTA, S
SOLANKI, HS
DHALL, R
ALLAIN, A
DHARA, S
PANT, P
DESHMUKH, MM
Keywords: single-electron transistor
suspended graphene
carbon nanotubes
electromechanical resonators
mechanical resonators
monolayer graphene
elastic properties
sheets
resonances
transport
Issue Date: 2010
Publisher: IOP PUBLISHING LTD
Citation: NANOTECHNOLOGY, 21(16), -
Abstract: We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.
URI: http://dx.doi.org/10.1088/0957-4484/21/16/165204
http://dspace.library.iitb.ac.in/xmlui/handle/10054/9175
http://hdl.handle.net/10054/9175
ISSN: 0957-4484
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback