Please use this identifier to cite or link to this item:
Title: Temporally Adaptive, Partially Unsupervised Classifiers for Remote Sensing Images
Authors: INAMDAR, S
Issue Date: 2007
Citation: IETE TECHNICAL REVIEW, 24(4), 249-256
Abstract: Remote sensing is being increasingly used over the last few decades as a powerful tool for monitoring, study and analysis of the surface of the earth as well as the atmosphere. In this paper we shall consider temporally adaptive pattern recognition techniques for land-cover classification in multitemporal and multispectral remote sensing images. The technique comprises of pre-processing using global and classwise probability density function (PDF) matching for temporally adapting the statistics before classification. We focus on the utility of these techniques in generating improved partially unsupervised land-cover classifiers and their comparative study.
ISSN: 0256-4602
Appears in Collections:Article

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.