DSpace
 

DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/10054/8403

Title: On a generalized framework for modeling the effects of process variations on circuit delay performance using response surface methodology
Authors: HARISH, BP
BHAT, N
PATIL, MB
Keywords: simulation
optimization
design
Issue Date: 2007
Publisher: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation: IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 26(3), 606-614
Abstract: A generalized methodology for modeling the effects of process variations on circuit delay performance is proposed by directly relating the variations in process parameters to variations in delay metric of a digital circuit. The 2-input NAND gate is used as a library element for 65 nm gate length technology, whose delay is extensively characterized by mixed-mode simulations. This information is then used in a general-purpose circuit simulator SEQUEL, by incorporating appropriate templates for the,NAND gate library. A 4-bit x 4-bit Wallace tree multiplier circuit, consisting of about 300 2-input NAND gates, is used as a representative combinational circuit to demonstrate the proposed methodology. The variation in the multiplier delay is characterized by an extensive Monte Carlo analysis. To extend this methodology for a generic technology library with a variety of library elements, modeling of NAND gate delays by response surface methodology (RSM), in terms of process parameters, is carried out using design of experiments (DOE). A simple piecewise quadratic model, based on the least squares method (LSM), is proposed for one-parameter variation to address significant cubic effects observed in the delay response function. Then, a hybrid model for gate delays is generated by superimposing the interaction terms of DOE-RSM model upon the quadratic model of one-parameter variation to address the generalized case of simultaneous variations in multiple process parameters. The proposed methodology has been demonstrated for NAND gate library with 266 gates, and the simplicity and generality of the approach make it equally applicable to a large library of cells for both statistical timing analysis and statistical circuit simulation at the gate level.
URI: http://dx.doi.org/10.1109/TCAD.2006.883910
http://dspace.library.iitb.ac.in/xmlui/handle/10054/8403
http://hdl.handle.net/10054/8403
ISSN: 0278-0070
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback