Please use this identifier to cite or link to this item:
Title: Data clustering using hierarchical deterministic annealing and higher order statistics
Authors: DESAI, UB
Keywords: Genetic Algorithms
Perturbation Techniques
Signal Distortion
Simulated Annealing
Issue Date: 1999
Publisher: IEEE
Citation: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 46(8), 1100-104
Abstract: In this brief, we propose an extension to the hierarchical deterministic annealing (HDA) algorithm for clustering by incorporating additional features into the algorithm. To decide a split in a cluster, the interdependency among all the clusters is taken into account by using the entire data distribution. A general distortion measure derived from the higher order statistics (HOS) of the data is used to analyze the phase transitions. Experimental results clearly demonstrate the improvement in the performance of the HDA algorithm when the interdependency among the clusters and the HOS of the data points are also utilized for the purpose of clustering.
ISSN: 1057-7130
Appears in Collections:Article

Files in This Item:
File Description SizeFormat 
782060.pdf186.7 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.