Please use this identifier to cite or link to this item:
Title: Analysis of synaptic quantal depolarizations in smooth muscle using the wavelet transform
Authors: DESAI, UB
Keywords: Bioelectric Potentials
Wavelet Transforms
Issue Date: 2000
Publisher: IEEE
Citation: IEEE Transactions on Biomedical Engineering 47(6), 701-08
Abstract: The time-frequency characteristics of synaptic potentials contain valuable information about the process of neurotransmission between nerves and their target organs. For example, at the synapse between autonomic nerves and smooth muscle, two central issues of neurophysiology, i.e., (1) the probability of neurotransmitter release and (2) the quantal behavior of transmission can be deduced from analysis of the rising phases of evoked excitatory junction potentials (eEJP's) recorded from smooth muscle. eEJP rising phases are marked by prominent inflexions, which reflect these features of neuronal activity, Since these inflexions contain time-varying frequency information, the authors have applied recent techniques of time-frequency analysis based upon wavelet transforms to eEJP's recorded from the guinea-pig vas deferens in vitro. They find that these techniques allow accurate and convenient characterization of neuronal release sites, and that their probability of release falls between 0.001-0.004. They have also analyzed eEJP's recorded in the presence of the chemical 1-heptanol, which reveals quantal depolarizations. These results have helped clarify the nature of the quantal depolarizations that underly eEJP's. The present method offers significant advantages over those previously employed for these tasks, and holds promise as a novel approach to the analysis of synaptic potentials.
ISSN: 0018-9294
Appears in Collections:Article

Files in This Item:
File Description SizeFormat 
844215.pdf125.96 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.