Please use this identifier to cite or link to this item:
Title: Effect of hydraulic retention time on the biodegradation of complex phenolic mixture from simulated coal wastewater in hybrid UASB reactors
Keywords: Sludge Blanket Reactor
Anaerobic Treatment
Issue Date: 2008
Citation: JOURNAL OF HAZARDOUS MATERIALS, 153(1-2), 843-851
Abstract: This study describes the feasibility of anaerobic treatment of complex phenolics mixture from a simulated synthetic coal wastewater using four identical 13.5 L (effective volume) bench scale hybrid up-flow anaerobic sludge blanket (HUASB) (combining UASB + anaerobic filter) reactors at four different hydraulic retention times (HRT) under mesophilic (27 +/- 5 degrees C) conditions. Synthetic coal wastewater with an average chemical oxygen demand (COD) of 2240 mg/L and phenolics concentration of 752 mg/L was used as substrate. The phenolics contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. The study demonstrated that at optimum HRT, 24 h, and phenolic loading rate of 0.75 g COD/(m(3)-d), the phenolics and COD removal efficiency of the reactors were 96% and 86%, respectively. Bio-kinetic models were applied to data obtained from experimental studies in hybrid UASB reactor. Grau second-order multi-component substrate removal model was best fitted to the hybrid UASB reactor. The second-order substrate removal rate constant (k(2(s))) was found as 1.72 h(-1) for the hybrid reactor treating complex phenolic mixture. Morphological examination of the sludge revealed rod-type Methanothrix-like, cells to be dominant on the surface. (c) 2007
ISSN: 0304-3894
Appears in Collections:Article

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.