Please use this identifier to cite or link to this item:
Title: Alkaline fuel cell: carbon nanobeads coated with metal catalyst over porous ceramic for hydrogen electrode
Keywords: Performance
Issue Date: 2003
Citation: JOURNAL OF POWER SOURCES, 117(1-2), 39-44
Abstract: The development of a hydrogen electrode using a porous ceramic coated with carbon nanobeads for an alkaline fuel cell (AFC) is reported. This electrode can provide necessary strength and porosity to enable hydrogen to diffuse without allowing electrolyte to percolate inside the electrode. Various catalysts (Pt, Ni, Co and Fe) are electrochemically dispersed over the carbon nanobeads to examine their performance in the alkaline fuel cell. Turpentine oil has been used as a precursor for preparing the carbon nanobeads by a chemical vapour deposition technique. Scanning electron microscopic and transmission electron microscopic images show that the carbon nanobeads have sizes between 500 and 650 nm and are spread uniformly over the entire ceramic substrate. X-ray diffraction (XRD) patterns indicate that the nanobeads are graphitic in nature. Thus, the electrode is highly conductive. The current-voltage characteristics and chronopotentiometry of a half cell (i.e. hydrogen electrode coated with different electrocatalysts) and a full cell (using both hydrogen and oxygen electrodes) with 30% KOH solution are measured. About 93% of the theoretical hydrogen dissociation voltage is obtained with Ni and Pt catalyst. All other metals (Co and Fe) give a lower voltage. Ni-coated carbon nanobeads deposited over a ceramic oxide can be used in place of Raney nickel electrode as their characteristics are similar to those of a platinum electrode. (C) 2003 .
ISSN: 0378-7753
Appears in Collections:Article

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.