Please use this identifier to cite or link to this item:
Title: The benzophenanthridine alkaloid sanguinarine perturbs microtubule assembly dynamics through tubulin binding
Authors: LOPUS, M
Keywords: Bimodal Cell-Death
Issue Date: 2006
Citation: FEBS JOURNAL, 273(10), 2139-2150
Abstract: Sanguinarine has been shown to inhibit proliferation of several types of human cancer cell including multidrug-resistant cells, whereas it has minimal cytotoxicity against normal cells such as neutrophils and keratinocytes. By analyzing the antiproliferative activity of sanguinarine in relation to its effects on mitosis and microtubule assembly, we found that it inhibits cancer cell proliferation by a novel mechanism. It inhibited HeLa cell proliferation with a half-maximal inhibitory concentration of 1.6 +/- 0.1 mu M. In its lower effective inhibitory concentration range, sanguinarine depolymerized microtubules of both interphase and mitotic cells and perturbed chromosome organization in mitotic HeLa cells. At concentrations of 2 mu M, it induced bundling of interphase microtubules and formation of granular tubulin aggregates. A brief exposure of HeLa cells to sanguinarine caused irreversible depolymerization of the microtubules, inhibited cell proliferation, and induced cell death. However, in contrast with several other microtubule-depolymerizing agents, sanguinarine did not arrest cell cycle progression at mitosis. In vitro, low concentrations of sanguinarine inhibited microtubule assembly. At higher concentrations (> 40 mu M), it altered polymer morphology. Further, it induced aggregation of tubulin in the presence of microtubule-associated proteins. The binding of sanguinarine to tubulin induces conformational changes in tubulin. Together, the results suggest that sanguinarine inhibits cell proliferation at least in part by perturbing microtubule assembly dynamics.
ISSN: 1742-464X
Appears in Collections:Article

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.