Please use this identifier to cite or link to this item:
Title: Index design for dynamic personalized PageRank
Keywords: Numerical Analysis
Query Processing
Issue Date: 2008
Publisher: IEEE
Citation: Proceedings of the IEEE 24th International Conference on Data Engineering, Cancún, Mexico, 7-12 April 2008, 1489-1491
Abstract: Personalized PageRank, related to random walks with restarts and conductance in resistive networks, is a frequent search paradigm for graph-structured databases. While efficient batch algorithms exist for static whole-graph PageRank, interactive query-time personalized PageRank has proved more challenging. Here we describe how to select and build indices for a popular class of PageRank algorithms, so as to provide real-time personalized PageRank and smoothly trade off between index size, preprocessing time, and query speed. We achieve this by developing a precise, yet efficiently estimated performance model for personalized PageRank query execution. We use this model in conjunction with a query workload in a cost-benefit type index optimizer. On millions of queries from CITESEER and its data graphs with 74-320 thousand nodes, our algorithm runs 50-400x faster than whole-graph PageRank, the gap growing with graph size. Index size is 10-20% of a text index. Ranking accuracy is above 94%.
URI: 10.1109/ICDE.2008.4497599
ISBN: 978-1-4244-1836-7
Appears in Collections:Proceedings papers

Files in This Item:
File Description SizeFormat 
Index design for dynamic .pdf2.04 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.