DSpace
 

DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/10054/12643

Title: Analytical solutions using a higher order refined theory for the stability analysis of laminated composite and sandwich plates
Authors: KANT, T
SWAMINATHAN, K
Keywords: transverse stresses
bending element
deformation
accurate
loads
Issue Date: 2000
Publisher: TECHNO-PRESS
Citation: STRUCTURAL ENGINEERING AND MECHANICS, 10(4), 337-357
Abstract: Analytical formulations and solutions for the first time, to the stability analysis of a simply supported composite and sandwich plates based on a higher order refined theory, developed by the first author and already reported in the literature are presented. The theoretical model presented herein incorporates laminate deformations which account for the effects of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of inplane displacements with respect to the thickness coordinate - thus modelling the warping of transverse cross sections more accurately and eliminating the need for shear correction coefficients. The equations of equilibrium are obtained using the Principle of Minimum Potential Energy (PMPE). The comparison of the results using this higher order refined theory with the available elasticity solutions and the results computed independently using the first order and the other higher order theories developed by other investigators and available in the literature shows that this refined theory predicts the critical buckling load more accurately than all other theories considered in this paper. New results for sandwich laminates are also presented which may serve as a benchmark for future investigations.
URI: http://dspace.library.iitb.ac.in/xmlui/handle/10054/12643
http://hdl.handle.net/10054/12643
ISSN: 1225-4568
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback