DSpace
 

DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/10054/12301

Title: Prediction of mortality in an Indian intensive care unit - Comparison between APACHE II and artificial neural networks
Authors: NIMGAONKAR, A
KARNAD, DR
SUDARSHAN, S
OHNO-MACHADO, L
KOHANE, I
Keywords: disease classification-system
logistic-regression models
international comparisons
hospital mortality
genetic algorithm
acute physiology
severity
probability
cohort
Issue Date: 2004
Publisher: SPRINGER-VERLAG
Citation: INTENSIVE CARE MEDICINE, 30(2), 248-253
Abstract: Objective. To compare hospital outcome prediction using an artificial neural network model, built on an Indian data set, with the APACHE II (Acute Physiology and Chronic Health Evaluation II) logistic regression model. Design. Analysis of a database containing prospectively collected data. Setting. Medical-neurological ICU of a university hospital in Mumbai, India. Subjects. Two thousand sixty-two consecutive admissions between 1996 and1998. Interventions. None. Measurements and results. The 22 variables used to obtain day-1 APACHE II score and risk of death were recorded. Data from 1,962 patients were used to train the neural network using a back-propagation algorithm. Data from the remaining 1,000 patients were used for testing this model and comparing it with APACHE II. There were 337 deaths in these 1,000 patients; APACHE II predicted 246 deaths while the neural network predicted 336 deaths. Calibration, assessed by the Hosmer-Lemeshow statistic, was better with the neural network (H=22.4) than with APACHE II (H=123.5) and so was discrimination (area under receiver operating characteristic curve =0.87 versus 0.77, p=0.002). Analysis of information gain due to each of the 22 variables revealed that the neural network could predict outcome using only 15 variables. A new model using these 15 variables predicted 335 deaths, had calibration (H=27.7) and discrimination (area under receiver operating characteristic curve =0.88) which was comparable to the 22-variable model (p=0.87) and superior to the APACHE II equation (p<0.001). Conclusion. Artificial neural networks, trained on Indian patient data, used fewer variables and yet outperformed the APACHE II system in predicting hospital outcome.
URI: http://dx.doi.org/10.1007/s00134-003-2105-4
http://dspace.library.iitb.ac.in/xmlui/handle/10054/12301
http://hdl.handle.net/10054/12301
ISSN: 0342-4642
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback