DSpace
 

DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/10054/11540

Title: Simulation framework for electrophysiological networks: effect of syncytial properties on smooth-muscle synaptic potentials
Authors: TURALE, N
DEVULAPALLI, A
MANCHANDA, R
MOUDGALYA, K
SIVAKUMAR, G
Keywords: vas-deferens
current flow
varicosities
Issue Date: 2003
Publisher: PETER PEREGRINUS LTD
Citation: MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 41(5), 589-594
Abstract: A building block-based software framework was developed to simulate electrophysiological networks. The synaptic potentials generated during neurotransmission were simulated in an existing discrete bidomain model of smooth muscle, using cubic, three-dimensional grids of varying sizes. The model is automatically derived and numerically solved, and the results of the simulation agree with previous results obtained analytically. An enhanced model was also proposed, incorporating an additional (junctional) capacitance in the network. The correctness of the model was verified, and the effect of the extra capacitance on the synaptic potentials was explored. It was found that, with a junctional capacitance C-i of 1.4 x 10(-10) F incorporated, the peak amplitude of the spontaneous excitatory junction potential V-peak declined by similar to13% at node 0 and by similar to37% at node 3x for a system size of 9(3). Similar results were obtained for different system sizes. V-peak also declined as the junctional capacitance C-i was increased. In a system of size 11(3), a 200-fold increase in C-i induced a 55% reduction at node 0. It is suggested that the type of modular simulation framework developed here may find general applicability for simulations of other physiological systems.
URI: http://dx.doi.org/10.1007/BF02345322
http://dspace.library.iitb.ac.in/xmlui/handle/10054/11540
http://hdl.handle.net/10054/11540
ISSN: 0140-0118
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback