DSpace
 

DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/10054/10034

Title: The effect of spatial quadrature on finite element Galerkin approximations to hyperbolic integro-differential equations
Authors: SINHA, RK
PANI, AK
Keywords: convergence
Issue Date: 1998
Publisher: MARCEL DEKKER INC
Citation: NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 19(9-10), 1129-1153
Abstract: The purpose of this paper is to study the effect of numerical quadrature on the finite element approximations to the solutions of hyperbolic integro-differential equations. Both semidiscrete and fully discrete schemes are analyzed and optimal estimates are derived in L-infinity(H-1), L-infinity(L-2) norms and quasi-optimal estimate in L-infinity(L-infinity) norm using energy arguments. Further, optimal L-infinity(L-2)-estimates are shown to hold with minimal smoothness assumptions on the initial functions. The analysis in the present paper not only improves upon the earlier results of Baker and Dougalis [SIAM J. Numer. Anal. 13 (1976), pp. 577-598] but also confirms the minimum smoothness assumptions of Rauch [SIAM J. Numer. Anal. 22 (1985), pp. 245-249] for purely second order hyperbolic equation with quadrature.
URI: http://dx.doi.org/10.1080/01630569808816876
http://dspace.library.iitb.ac.in/xmlui/handle/10054/10034
http://hdl.handle.net/10054/10034
ISSN: 0163-0563
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback