Please use this identifier to cite or link to this item:
Title: Synthesis and characterization of low cost magnetorheological (MR) fluids - art. no. 65262R
Keywords: Particle-Size
Issue Date: 2007
Citation: Behavior and Mechanics of Multifunctional and Composite Materials 2007,6526,R5262-R5262
Abstract: Magnetorheological fluids have great potential for engineering applications due to their variable rheological behavior. These fluids find applications in dampers, brakes, shock absorbers, and engine mounts [1].However their relatively high cost (approximately US$600 per liter) limits their wide usage. Most commonly used magnetic material "Carbonyl iron" cost more than 90% of the MR fluid cost [2]. Therefore for commercial viability of these fluids there is need of alternative economical magnetic material. In the present work synthesis of MR fluid has been attempted with objective to produce low cost MR fluid with high sedimentation stability and greater yield stress. In order to reduce the cost, economical electrolytic Iron powder (US$ 10 per Kg) has been used. Iron powder of relatively larger size (300 Mesh) has been ball milled to reduce their size to few microns (I to 10 microns). Three different compositions have been prepared and compared for MR effect produced and stability. All have same base fluid (Synthetic oil) and same magnetic phase i.e. Iron particles but they have different additives. First preparation involves organic additives Polydimethylsiloxane (PDMS) and Stearic acid. Other two preparations involve use of two environmental friendly low-priced green additives guar gum (US$ 2 per Kg) and xanthan gum (US$ 12 per Kg) respectively. Magnetic properties of Iron particles have been measured by Vibrating Sample Magnetometer (VSM). Morphology of Iron particles and additives guar gum and xanthan gum has been examined by Scanning Electron Microscopy (SEM) and Particles Size Distribution (PSD) has been determined using Particle size analyzer. Microscopic images of particles, M-H plots and stability of synthesized MR fluids have been reported. The prepared low cost MR fluids showed promising performance and can be effectively used for engineering applications demanding controllability in operations.
ISBN: 978-0-8194-6647-1
ISSN: 0277-786X
Appears in Collections:Proceedings papers

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.