Please use this identifier to cite or link to this item:
Title: Retrieving images for remote sensing applications
Authors: SAWANT, N
Keywords: Texture Classification
Issue Date: 2006
Citation: Computer Vision, Graphics and Image Processing, Proceedings,4338,849-860
Abstract: A unique way in which content based image retrieval (CBIR) for remote sensing differs widely from traditional CBIR is the widespread occurrences of weak textures. The task of representing the weak textures becomes even more challenging especially if image properties like scale, illumination or the viewing geometry are not known. In this work, we have proposed the use of a new feature 'texton histogram' to capture the weak-textured nature of remote sensing images. Combined with an automatic classifier, our texton histograms are robust to variations in scale, orientation and illumination conditions as illustrated experimentally. The classification accuracy is further improved using additional image driven features obtained by the application of a feature selection procedure.
ISBN: 978-3-540-68301-8
ISSN: 0302-9743
Appears in Collections:Proceedings papers

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.