Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/xmlui/handle/100/17450
Title: Prediction of Blast-Induced Flyrock in Opencast Mines Using ANN and ANFIS
Authors: TRIVEDI, R
SINGH, TN
GUPTA, N
Keywords: Artificial Neural-Networks
Fuzzy Inference System
Performance Prediction
Compressive Strength
Area Security
Rock
Model
Sets
Issue Date: 2015
Publisher: SPRINGER
Citation: GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 33(4)875-891
Abstract: The aim of present study is prediction of blast-induced flyrock distance in opencast limestone mines using artificial intelligence techniques such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS). Blast design and geotechnical variables such as linear charge concentration, burden, stemming length, specific charge, unconfined compressive strength, and rock quality designation have been selected as independent variables and flyrock distance has been used as dependent variable. Blasts required for the study purpose have been conducted in four limestone mines in India. Out of one hundred and twenty-five (125) blasts, dataset of one hundred blasts have been used for training, testing and validation of the ANN and ANFIS based prediction model. Twenty-five (25) data have been used for evaluation of the trained ANN and ANFIS models. In order to know the relationship among the independent and dependent variables, multi-variable regression analysis (MVRA) has also been performed. The performance indices such as root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R-2) have been evaluated for ANN, ANFIS and MVRA. RMSE as well as MAE have been found lower and R-2 has been found higher in case of ANFIS in comparison of ANN and MVRA. ANFIS has been found a superior predictive technique in comparison to ANN and MVRA. Sensitivity analysis has also been performed using ANFIS to assess the impact of independent variables on flyrock distance.
URI: http://dx.doi.org/10.1007/s10706-015-9869-5
http://dspace.library.iitb.ac.in/jspui/handle/100/17450
ISSN: 0960-3182
1573-1529
Appears in Collections:Article

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.