DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/100/17192

Title: Fermi-level depinning at metal/GaN interface by an insulating barrier
Authors: ADARI, R
Keywords: Gallium nitride
Fermi level
Schottky contact
Issue Date: 2014
Citation: THIN SOLID FILMS, 550564-568
Abstract: We have investigated Schottky contacts on GaN and observed that Fermi level pinning is dominant at the metal/GaN interface with a pinning factor of 0.23. A methodology to solve the problem by introducing a thin layer of MgO between the metal and the semiconductor is demonstrated here. It is observed that the insertion of a thin layer of the insulator prevents the metal wave-function penetration into the semiconductor band gap which in turn helps in the Fermi level depinning for GaN. We have particularly demonstrated the Fermi level depinning for ferromagnetic Schottky contact Fe and shown its usefulness for electrical spin injection and detection. The resistance-area product of an as deposited Fe/GaN contact is found to be too high for efficient spin injection and detection. It is improved considerably by using a 3 nm layer of MgO and the effective barrier height is reduced to 0.4 eV. We have further investigated the influence of low work function metal Gd and found it is possible to do barrier height engineering when deposited in conjunction with other metals. (C) 2013 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.tsf.2013.11.041
ISSN: 0040-6090
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback