DSpace
 

DSpace at IIT Bombay >
IITB Publications >
Article >

Please use this identifier to cite or link to this item: http://dspace.library.iitb.ac.in/jspui/handle/100/14369

Title: THE POSITIVITY OF THE FIRST COEFFICIENTS OF NORMAL HILBERT POLYNOMIALS
Authors: GOTO, S
HONG, J
MANDAL, M
Keywords: LOCAL-RINGS
IDEALS
Issue Date: 2011
Publisher: AMER MATHEMATICAL SOC
Citation: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,139(7)2399-2406
Abstract: Let R be an analytically unramified local ring with maximal ideal m and d = dim R > 0. If R is unmixed, then (e) over bar (1)(I)(R) >= 0 for every m-primary ideal I in R, where (e) over bar (1)(I)(R) denotes the first coefficient of the normal Hilbert polynomial of R with respect to I. Thus the positivity conjecture on (e) over bar (1)(I)(R) posed by Wolmer V. Vasconcelos is settled affirmatively.
URI: http://dx.doi.org/10.1090/S0002-9939-2010-10710-4
http://dspace.library.iitb.ac.in/jspui/handle/100/14369
ISSN: 0002-9939
Appears in Collections:Article

Files in This Item:

There are no files associated with this item.

View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback