Multiple one-electron oxidation and reduction of trinuclear bis(2,4-pentanedionato)ruthenium complexes with substituted diquinoxalino[2,3-a:2',3'-c]phenazine ligands

Sandeep Ghumaan a, Biprajit Sarkar b, Mahendra P. Patil a, Jan Fiedler c, Raghavan B. Sunoj a,*, Wolfgang Kaim b,*, Goutam Kumar Lahiri a,*

a Department of Chemistry, Indian Institute of Technology – Bombay, Powai, Mumbai 400076, India
b Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D – 70550 Stuttgart, Germany
c J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, CZ – 18223 Prague, Czech Republic

Abstract

The complexes (µ₃-L/L²)[Ru(acac)₂]₃, acac⁻ = 2,4-pentanedionato, L¹ = 2,3,8,9,14,15-hexachlorodiquinoxalino[2,3-a:2',3'-c]phenazine and L² = 2,3,8,9,14,15-hexamethyldiquinoxalino[2,3-a:2',3'-c]phenazine, undergo stepwise one-electron reduction with three (L²) or four electrons (L¹). All reversibly accessible states were characterized by UV-Vis-NIR spectroelectrochemistry. Oxidation leads to mixed-valent intermediates ((µ₃-L)[Ru(acac)₂]₃)⁺ and ((µ₃-L)[Ru(acac)₂]₂)²⁺ of which the Ru IIIRuIIRuII combinations exhibit higher comproportionation constants Kc than the Ru IIIIRuIIIRuII states – in contrast to a previous report for the unsubstituted parent systems ((µ₃-L³)[Ru(acac)₂]₃)²⁺, L³ = diquinoxalino[2,3-a:2',3'-c]phenazine. No conspicuous inter-valence charge transfer absorptions were observed for the mixed-valent intermediates in the visible to near-infrared regions. The monocations and monoanions were characterized by EPR spectroscopy, revealing rhombic ruthenium(III) type signals for the former. Electron addition produces ruthenium(II) complexes of the reduced forms of the ligands L, a high resolution EPR spectrum with ¹⁴N and ³⁵,³⁷Cl hyperfine coupling and negligible g anisotropy was found for (µ₃-L¹)[Ru(acac)₂]²⁺. DFT calculations of (µ₃-L¹)[Ru(acac)₂]³ confirm several ligand-centered low-lying unoccupied MOs for reduction and several metal-based high-lying occupied MOs for electron withdrawal, resulting in low-energy metal-to-ligand charge transfer (MLCT) transitions.

Keywords: DFT calculations; EPR; Radical complexes; Ruthenium; Electrochemistry; Spectroelectrochemistry

1. Introduction

In contrast to the vast number of mixed-valent ligand-bridged diruthenium complexes [1] there have been relatively few reports on the electron transfer reactivity of symmetrically trinuclear compounds [2–8]. If the common Ru IIIIRu IIIRu II redox pairs are involved, this arrangement leads to two homovalent and to two different mixed-valent states, the odd-electron form Ru IIIIRu IIIRu II and the even-electron species Ru IIIIRu IIIIRu II. Electron transfer to or from a trigonally symmetrical system can involve partial occupation of degenerate orbitals with the resulting tendency for distortion.

Following a previous report [8] on the synthesis and spectroelectrochemical characterization of unsubstituted (µ₃-L³)[Ru(acac)₂]₃ (3), a trinuclear complex of the extended π ligand L³ = diquinoxalino[2,3-a:2',3'-c]phenazine, we now describe the results for the redox systems ((µ₃-L¹)[Ru(acac)₂]₃)ⁿ⁺, n = 1, 2²⁺, and (µ₃-L²)[Ru(acac)₂]₃)ⁿ⁻, n = 1⁻, 2⁻, with the hexasubstituted ligands L¹ and L² (Scheme 1).
DFT calculation results are reported for the hexachloro-substituted 1, involving structure optimization and MO description. Voltammetric methods were employed to establish multistep reversible electron transfer while spectroelectrochemistry in the UV–Vis–NIR region as well as spectroelectrochemistry in the UV–Vis–NIR region. Cyclic voltammetric, differential pulse voltammetric and coulometric measurements were carried out using a PAR model 273A electrochemistry system. Platinum wire working and auxiliary electrodes and an aqueous saturated calomel reference electrode (SCE) were used in a three-electrode configuration. The supporting electrolyte was 0.1 M Et4NClO4 and the solute concentration was ~10−3 M. The half-wave potential Epa was set equal to 0.5(Epa + Epc), where Epa and Epc are the anodic and cathodic cyclic voltammetric peak potentials, respectively. A platinum wire-gauze working electrode was used in the coulometric experiments. The elemental analysis was carried out with a Perkin–Elmer 240C elemental analyzer. Electrospray mass spectra were recorded on a Micromass Q-ToF mass spectrometer.

2. Materials

2.1. Materials

The precursor compounds Ru(acac)2(CH3CN)2 [9], 2,3,8,9,14,15-hexachlorodiquinoxalino[2,3-a:2',3'-c]phena-

2.2. Physical measurements

UV–Vis–NIR spectroelectrochemical studies were performed in CH3CN/0.1 M Bu4NPF6 at 298 K using an optically transparent thin layer electrode (OTTLE) cell [12] in connection with a J&M TIDAS spectrophotometer. FT-IR spectra were taken on a Nicolet spectrophotometer with samples prepared as KBr pellets. Solution electrical conductivity was checked using a Systronic 305 conductivity Bridge. 1H NMR spectra were obtained with a 400 MHz Varian FT spectrometer. The EPR measurements were made in a two-electrode capillary tube [13] with an X-band Bruker system ESP300, equipped with a Bruker ER035M gaussmeter and a HP 5350B microwave counter. Cyclic voltammetric, differential pulse voltammetric and coulo-

1 The heterocyclic system was referred to as 5,6,11,12,17,18-hexaazatri-naphthalene (Ref. [11]).
2.4. Computational details

Complete geometry optimization without symmetry constraints was carried out for 1 in the Δ_3/Λ_3 configuration, using the density functional theory method at the B3LYP level. The Δ_3/Λ_3 configuration was chosen for convenience, isomerism was shown to affect the electronic structure very little [1f,1i,1j,3]. All elements except ruthenium were assigned a 6-31G* basis set. The Stuttgart–Dresden effective core potential (ECP), representing 19 core electrons, along with valence basis sets (SDD) was used for the ruthenium atoms [14a,14b]. Calculations were performed with Gaussian 98 [14c]. Vertical electronic excitations based on B3LYP optimized geometries were computed using the time-dependent density functional theory (TD-DFT) formalism [14d,14e] with the B3LYP functional using the above combination of basis sets. Extinction coefficients were obtained from calculated oscillator strengths using Gaussian line shape and a full width at half maximum (fwhm) of 0.4 eV = 3228 cm$^{-1}$ [14f]. The molecular orbital compositions have been determined using the programme AOMIX using the B3LYP/SDD,6-31G* wave function [14g]. Visual inspection of all key orbitals was done with MOLDEN [14h] to assign the nature of various electronic transitions.

3. Results and discussion

Regardless of the molar ratio of the reactants, the trinuclear complexes 1 and 2 were invariably obtained from reactions between Ru(acac)$_2$(CH$_3$CN)$_2$ and either of the free ligands. The well established [9,15] π electron donor capacity of the Ru II(acac)$_2$ complex fragment is held responsible for enhancing the metal affinity of mono- and dinuclear intermediates through extensive π conjugation until full charge transfer supported coordinative saturation [16] is achieved.

Positive ion electrospray mass spectroscopy of 1 (Fig. 1a) and 2 (Fig. 1b) support the identity of the new hexasubstituted complexes. The 1H NMR spectra of 1 and 2 exhibit two sets of signals both for the aromatic CH protons of L1 and L2 and for the CH/CH$_3$ groups of the acac$^-$ ligands (Fig. 2, Section 2). The presence of two sets of signals in each case indicates the existence of mixtures of two diastereoisomers (Δ_3/Λ_3 or $\Delta_2\Lambda/\Lambda_2\Delta$) in solution. The two closely spaced singlets for all protons involved with a particular diastereoisomeric form result from the pseudo C$_3$-symmetry of the molecule. In related cases such isomerism was shown to affect the electrochemical and spectroscopic response only slightly [1f,1i,1j,3], we therefore used the product distributions as obtained and as characterized by NMR (Fig. 2).

Full geometry optimization of complex 1 in the Δ_3/Λ_3 configuration was carried out at the B3LYP level of theory by using the SDD basis set for Ru and the 6-31G* basis for all other atoms (Fig. 3). Important optimized structural parameters of complex 1 are summarized in Tables S1

Fig. 1. Electrospray mass spectra of: (a) 1 and (b) 2 in CH$_3$CN.

Fig. 2. 1H NMR spectrum of 1 in (CD$_3$)$_2$SO. Inserts show expanded parts of the spectrum in the range of: (a) 5.5–8.5 ppm and (b) 1.5–2.5 ppm.
and S2. The Ru–N and Ru–O(acac) distances are found to vary only slightly and range between 2.06 and 2.08 Å. The N(4)–C(5) and N(7)–C(6) π bonds are found to be elongated by about 0.023 Å in 1 as compared to the free ligand L1, and this N–C π bond elongation is nearly the same at each ruthenium center which signifies the comparable extent of π back-bonding from each Ru II ion (vide infra).

The metal centers were found to be separated by about 6.9 Å (Table S1).

Electrochemically the complexes 1 and 2 exhibit multiple reversible one-electron reduction waves which are associated with the highly conjugated bridging ligands (L1/L2); the potentials also vary systematically with the electronic nature of the substituents, Me or Cl. In case of 1, four distinct reduction processes were observed whereas only three waves were detected for 2 (Table 1, Fig. 4). In addition, 1 and 2 display three successive oxidation processes corresponding to the reversible transitions RuIII/RuII/RuIII (couple I), RuII/RuIII/RuIII (couple II), and RuII/RuIII/RuIII (couple III) (Table 1, Fig. 4). These potentials are lower for R = Me (complex 2) than for R = Cl (complex 1) (Table 1), as expected from the different electron donating and withdrawing abilities. Remarkably, the separation between the redox potentials for complex oxidation leads to larger comproportionation

Table 1
Electrochemical dataa

<table>
<thead>
<tr>
<th>Compound</th>
<th>E298/V(ΔEp, mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>0.16 (70)</td>
</tr>
<tr>
<td>2</td>
<td>0.01 (60)</td>
</tr>
<tr>
<td>3b</td>
<td>0.34 (70)</td>
</tr>
</tbody>
</table>

a In CH3CN/0.1 M Et4NClO4 vs. SCE. ΔEp: peak potential difference.
b Ref. [8].
constants for the first intermediate \((K_{c1})\) than for the second form, \(\text{Ru}^{I}\text{Ru}^{II}\text{Ru}^{III}\) \((K_{c2})\), both for \(1^{n+}\) and \(2^{n+}\), respectively \((RT\ln K_c = nF(DE))[1]\). Usually, the opposite is observed \((\text{Table 2})\) due to increasing Coulombic interactions; for instance, \(K_c\) values for the corresponding parent complex \(3^{n+}\) with \(R = \text{H}\) have been reported at \(10^{5.7} (K_{c1}) < 10^{8.0} (K_{c2})\). In comparison to \(3^{n+} K_{c1}\) appears to be slightly greater for \(1^{n+}\) or \(2^{n+}\), however, \(K_{c2}\) is much larger for \(3^{n+}\) than for \(1^{n+}\) or \(2^{n+}\).

The electrolyte-dependent \([17a,17b]\) comproportionation constants \(K_c\) reflect several different effects such as the electrostatic interaction, an inductive factor, the resonance exchange, the antiferromagnetic exchange stabilization, and ion-pairing effects \([17c,17d,17e]\). Their comparative interpretation is thus not always as straightforward as commonly believed. In the present case, the smaller range for the dicationic, i.e. rather highly charged \(\text{Ru}^{II}\text{Ru}^{III}\text{Ru}^{III}\) forms may reflect diminished Coulombic effects due to enhanced charge delocalization by the six \(p\) donating Cl \((1^{2+})\) or inductively electron donating Me substituents \((2^{2+})\). Not unexpectedly, the potentials for corresponding diastereoisomers are rather similar \([3,18,19]\). Nevertheless, the profile of the cyclic voltammograms, in particular for \(2\), suggests the existence of two diastereoisomers in solution as has also been observed by \(^1H\) NMR \((\text{Fig. 2, Section 2})\).

The EPR spectra taken of monocations and monoa
nions are in agreement with expectations \([8]\) for the frontier orbital situation and with the DFT calculated orbital

Table 2
The variation of \(K_c\) and IVCT values in symmetrical triruthenium complexes

<table>
<thead>
<tr>
<th>Formula</th>
<th>(K_{c1})</th>
<th>(K_{c2})</th>
<th>(IVCT)(^1)</th>
<th>(IVCT)(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{acac}]_2\text{Ru}_3(\mu_3-L^4)) ((1))</td>
<td>10^{6.8}</td>
<td>10^{6.9}</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>([\text{acac}]_2\text{Ru}_3(\mu_3-L^5)) ((2))</td>
<td>10^{6.8}</td>
<td>10^{3.6}</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>([\text{acac}]_2\text{Ru}_3(\mu_3-L^3)) ((3))</td>
<td>10^{5.7}</td>
<td>10^{1.1}</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>(\Delta_2/\Delta_1{[(\text{bpy})_2\text{Ru}_3(\mu_3-L^4)]^{n+}}^{n+})</td>
<td>10^{3.9}</td>
<td>10^{4.1}</td>
<td>2150 (3315)</td>
<td>2130 (2990)</td>
</tr>
<tr>
<td>(\Delta_2/\Delta_1{[(\text{bpy})_2\text{Ru}_3(\mu_3-L^3)]^{n+}}^{n+})</td>
<td>10^{3.9}</td>
<td>10^{4.1}</td>
<td>2155 (4180)</td>
<td>2236 (2150)</td>
</tr>
<tr>
<td>([(\text{phen})_3\text{Ru}_3(\mu_3-L^4)]^{n+})</td>
<td>10^{3.7}</td>
<td>10^{4.1}</td>
<td>1900 (2300)</td>
<td>1900 (2400)</td>
</tr>
<tr>
<td>([(\text{phen})_3\text{Ru}_3(\mu_3-L^3)]^{n+})</td>
<td>10^{4.5}</td>
<td>10^{4.7}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([(\text{phen})_3\text{Ru}_3(\mu_3-L^2)]^{n+})</td>
<td>10^{4.7}</td>
<td>10^{4.1}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([(\text{phen})_3\text{Ru}_3(\mu_3-L)]^{n+})</td>
<td>10^{3.2}</td>
<td>10^{4.1}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([(\text{pap})_3\text{Ru}_3(\mu_3-L^4)]^{n+})</td>
<td>10^{2.0}</td>
<td>10^{3.4}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([(\text{pap})_3\text{Ru}_3(\mu_3-L^3)]^{n+})</td>
<td>10^{3.0}</td>
<td>10^{6.4}</td>
<td>950 (2950)</td>
<td>2085 (8400)</td>
</tr>
<tr>
<td>([\text{Ru}(\text{O})_3(\text{CH}_3\text{CO}_2)_2(\text{CO})(\text{dmap})_2])</td>
<td>10^{1.6}</td>
<td>10^{27}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([\text{Ru}(\text{O})_3(\text{CH}_3\text{CO}_2)_2(\text{CO})(\text{py})_2])</td>
<td>10^{1.4}</td>
<td>10^{26}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([\text{Ru}(\text{O})_3(\text{CH}_3\text{CO}_2)_2(\text{CO})(\text{CNXy})_2])</td>
<td>10^{1.0}</td>
<td>10^{24}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([\text{Ru}(\text{O})_3(\text{CH}_3\text{CO}_2)_2(\text{CNXy})(\text{py})_2])</td>
<td>10^{1.5}</td>
<td>10^{21}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([\text{Ru}(\text{O})_3(\text{CH}_3\text{CO}_2)_2(\text{CNXy})(\text{py})])</td>
<td>10^{1.8}</td>
<td>10^{13}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([\text{Ru}(\text{O})_3(\text{CH}_3\text{CO}_2)_2(\text{CNXy})(\text{dmap})])</td>
<td>10^{2.2}</td>
<td>10^{13}</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>([\text{Ru}(\text{O})_3(\text{CH}_3\text{CO}_2)_2(\text{CNXy})_2])</td>
<td>10^{8.8}</td>
<td>10^{11}</td>
<td>1004 (12200)</td>
<td>1002 (6400)</td>
</tr>
</tbody>
</table>

\(^{a}\) \(K_c\): comproportionation constant for \(\text{Ru}^{II,III,III}(K_{c1})\) and \(\text{Ru}^{II,III,III}(K_{c2})\).

\(^{b}\) IVCT: inter-valence charge-transfer transitions for the \(\text{Ru}^{II,III,III}(\text{IVCT}_1)\) and \(\text{Ru}^{II,III,III}(\text{IVCT}_2)\) states (IVCT).

\(^{c}\) Not observed.

\(^{d}\) Not reported.
compositions (see Table 4). The cations exhibit rhombic RuIII type signals with considerable g anisotropy in the immobilized state (Fig. 5, Table 3); this and the average g above 2 are indicative of low-spin d5 species in a distorted octahedral situation [20].

In contrast, the monoanions exhibit EPR features without detectable g anisotropy at X band frequency (9.5 GHz), the isotropic g values near 2.00 (Table 3) signify vanishing participation of atoms with large spin–orbit coupling constants at the spin distribution [21]. The complex anion 1− was even found to exhibit hyperfine structure caused by coupling with 14N ($I = 1$) and 35,37Cl nuclei ($I = 3/2$) at the order of about 1 G (Fig. 6). These values are compatible with the composition of the lowest unoccupied MO (see Fig. 8), small, unresolved hyperfine interaction with the total of 18 methyl hydrogen atoms is likely to obscure the hyperfine structure for 2−. Evidence for symmetry lowering on the EPR time scale has not been observed, there is probably rapid equilibration of any distortions.

The signal detectability at room temperature, the small line-width allowing for EPR resolution, the isotropic g factors close to the free electron value of 2.0023, and the absence of metal (99,101Ru, $I = 5/2$) hyperfine splitting and of g anisotropy at 9.5 GHz are all in agreement with an almost exclusively ligand-centered spin [21]. In fact, the results suggest much less metal participation than in complexes of [Ru(bpy)\textsubscript{2}]2+ with anion radical ligands [13], probably because of the donor characteristics of Ru(acac)\textsubscript{2} in comparison to [Ru(bpy)\textsubscript{2}]2+.

The energies and the composition of the frontier Kohn–Sham orbitals (Figs. 7 and 8) have been examined using the AOMIX programme [14g,22]. The filled levels (between HOMO and HOMO − 6) are predominantly metal-centered orbitals with total Ru contributions of around 65% and additional mixing with the π orbitals of acac− (Table 4). The unfilled levels, on the other hand, are primarily located over the L1 unit, having π-

![Fig. 5. EPR spectrum of 2− in CH\textsubscript{3}CN/0.1 M Bu\textsubscript{4}NPF\textsubscript{6} at 4 K (artefact radical signal from cavity at 3500 G).](image)

![Table 3](image)

Table 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_{iso}</th>
<th>Δg</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma^−$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>2.0053</td>
<td><0.10</td>
<td>this work</td>
</tr>
<tr>
<td>Γ^+</td>
<td>2.398</td>
<td>2.140</td>
<td>1.815</td>
<td>2.131b</td>
<td>0.583</td>
<td>this work</td>
</tr>
<tr>
<td>$\Gamma^−$</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1.9706</td>
<td><0.10</td>
<td>this work</td>
</tr>
<tr>
<td>Γ^+</td>
<td>2.370</td>
<td>2.107</td>
<td>1.782</td>
<td>2.100b</td>
<td>0.589</td>
<td>this work</td>
</tr>
<tr>
<td>$\Gamma^−$</td>
<td>2.058</td>
<td>2.058</td>
<td>1.924</td>
<td>1.969b</td>
<td>0.133</td>
<td>[8]</td>
</tr>
<tr>
<td>Γ^+</td>
<td>2.332</td>
<td>2.154</td>
<td>1.877</td>
<td>2.128b</td>
<td>0.455</td>
<td>[8]</td>
</tr>
</tbody>
</table>

a Not resolved.

b g_{av} (calculated).

![Fig. 6. EPR spectra of 1− at: (a) 110 K and (b) 298 K (top: experimental, bottom: simulated) in CH\textsubscript{3}CN/0.1 M Bu\textsubscript{4}NPF\textsubscript{6}. Simulation parameters 1.8 G (6·14N) and 0.6/0.5 G (6·35,37Cl in natural abundance).](image)

We have identified the π^* orbital of L1 as the one in the xy-plane by careful analysis of the MO coefficient of the LUMO, which is mainly located on π^* of L1 (66%) with minor contribution from δσ on Ru. Further, the d-orbital in the same plane as that of L1 is taken as the d\textsubscript{xy}, and the remaining orthogonal d-orbitals as d\textsubscript{yz} and d\textsubscript{yz}.
Table 4
Orbital energies and atomic orbital contributions for the frontier molecular orbitals of 1 computed without symmetry constraints

<table>
<thead>
<tr>
<th>MO</th>
<th>Orbital energy (eV)</th>
<th>%Ru1</th>
<th>%Ru2</th>
<th>%Ru3</th>
<th>%Ru_total</th>
<th>%L1</th>
<th>%acac</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMO + 2</td>
<td>−2.95 (23790)*</td>
<td>6.5</td>
<td>4.6</td>
<td>2.9</td>
<td>14.0</td>
<td>82.7</td>
<td>3.3</td>
</tr>
<tr>
<td>LUMO + 1</td>
<td>−2.96 (23870)</td>
<td>5.2</td>
<td>6.7</td>
<td>3.9</td>
<td>15.8</td>
<td>81.3</td>
<td>2.9</td>
</tr>
<tr>
<td>LUMO</td>
<td>−3.16 (25490)</td>
<td>8.1</td>
<td>8.4</td>
<td>12.2</td>
<td>28.7</td>
<td>66.1</td>
<td>5.3</td>
</tr>
<tr>
<td>HOMO</td>
<td>−4.86 (39200)</td>
<td>29.1</td>
<td>30.3</td>
<td>6.5</td>
<td>65.9</td>
<td>7.2</td>
<td>26.9</td>
</tr>
<tr>
<td>HOMO − 1</td>
<td>−4.91 (39600)</td>
<td>10.7</td>
<td>8.2</td>
<td>47.1</td>
<td>66.0</td>
<td>5.3</td>
<td>29.7</td>
</tr>
<tr>
<td>HOMO − 2</td>
<td>−4.98 (40170)</td>
<td>25.5</td>
<td>26.6</td>
<td>16.1</td>
<td>68.2</td>
<td>6.6</td>
<td>25.2</td>
</tr>
</tbody>
</table>

* Values in parentheses indicate orbital energy in cm⁻¹.
tributions from the ruthenium atoms towards the LUMO are found to be about the same on average, the effective tris-
gonal symmetrical situation being further confirmed by the optimized geometrical parameters around the ruthenium atoms. Nonetheless, the metals contribution especially to the calculated LUMO seems to be overestimated, considering the EPR results with their suggestion of marginal ruthenium influence.

UV–Vis–NIR absorption spectroelectrochemistry was performed for the multistep series 1^{3+}–1^{4-} (Figs. 9 and 10) and 2^{3+}–2^{4-} (Table 5).

The results show similar trends for both series in agreement with the donor effect of both kinds of substituents. The free ligands have long-wavelength $\pi-\pi^*$ absorption bands at about 412 nm (ε ca. $6 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) whereas the lowest energy absorption maxima of 1 and 2 lie around 660 nm (ε ca. $1.8 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$). These bands are assumed to derive from allowed metal-to-ligand charge transfer (MLCT) transitions, given by the experimentally and computationally suggested presence of several high-
lying occupied d levels and low-lying unoccupied ligand π^* orbitals.

A selected list of computed vertical excitation energies using the time-dependent density functional theory (TD-
DFT) is therefore given in Table S2. For 1, two transi-
tions with fairly high oscillator strengths and calculated extinction coefficients have been obtained, one at
781 nm ($\varepsilon = 2914 \text{ M}^{-1} \text{ cm}^{-1}$) and another at 771 nm ($\varepsilon = 4993 \text{ M}^{-1} \text{ cm}^{-1}$). The quantitative assessment of these orbital overlap-favored MLCT processes compares with experimental values for 1 of 890 nm (sh) and 680 nm ($\varepsilon = 23900 \text{ M}^{-1} \text{ cm}^{-1}$). As must be expected for

![Fig. 9. UV–Vis–NIR spectroelectrochemistry for the conversions: (a) $1^- \rightarrow 1^+$, (b) $1^+ \rightarrow 1^{2+}$ and (c) $1^{2+} \rightarrow 1^{3+}$ in CH$_3$CN/0.1 M Bu$_4$NPF$_6$.](image)

![Fig. 10. UV–Vis–NIR spectroelectrochemistry for the conversions: (a) $1^- \rightarrow 1^+$, (b) $1^+ \rightarrow 1^{2+}$, (c) $1^{2+} \rightarrow 1^{3+}$ and (d) $1^{3+} \rightarrow 1^{4+}$ in CH$_3$CN/0.1 M Bu$_4$NPF$_6$.](image)
a situation with several filled d orbitals from three d6 metal centers and a number of ligand π^* MOs (Fig. 4) there are several other MLCT transitions of lower energy but much smaller oscillator strengths (poor orbital overlap) which are not experimentally detectable (Table S2).

A similar reason may preclude [8] the detection of the inter-valence charge transfer (IVCT) bands of the mixed-valent forms $^{1+}$, $^{12+}$, $^{2+}$ and $^{22+}$ in the typical near-infrared region [1,3]. In spite of careful spectral search even in the mid-infrared region we could not establish such bands (Table 5), although [Ru(bpy)$_2$]$^{2+}$ complexes of the related 1,4,5,8,9,12-hexaazatriphenylene ligands exhibit such features [3b,3c]. This absence of detectable long-wavelength absorption for otherwise clearly identified RuII/RuIII mixed-valent intermediates has been noted before not only for $^{3+}$ and $^{32+}$; dinucleating chelate acceptor bridges connecting ruthenium complex fragments, especially Ru(acac)$_2$, have previously been described to yield “IVCT silent” mixed-valent species [24]. An alternative interpretation [3a] involving the obscuring of the IVCT band by the MLCT absorptions in the visible would imply an unusually strong metal–metal interaction which we consider less likely. Within the spectroelectrochemically monitored electron transfer series (Figs. 9,10, and Table 5) it is remarkable that the second oxidation and reduction involve very little spectral changes. This may suggest spin pairing of the doubly reduced or oxidized forms in agreement with the absence of EPR triplet features. Although they can be generally assigned as MLCT and, at higher energies, as intra-ligand (IL) absorptions, the detailed identification of the major bands of the spectroelectrochemically generated complex ions (Table 5) will not be attempted and will have to await open-shell calculations. Given the photophysical and intercalating potential of such large π systems [25] further investigations of their electronic structures are warranted.

4. Conclusion

We have shown that EPR spectroscopy in conjunction with electrochemistry can provide an alternative way to identify mixed-valent intermediates, especially when the expected inter-valence CT bands in the long-wavelength region are not observable. The six fold substitution of the large heterocyclic π system clearly affects the physical properties, allowing not only for multiple oxidation at the metals but also for several ligand based reduction processes.

Acknowledgements

Financial support received from the Department of Science and Technology (DST), Council of Scientific and Industrial Research (CSIR)-New Delhi (India), the Deutsche Forschungsgemeinschaft (DFG), Fonds der Chemischen Industrie (FCI), the Deutsche Akademische Austauschdienst (DAAD) (Germany), is gratefully acknowledged.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.poly.2007.03.030.

References

[1] (a) C. Creutz, Prog. Inorg. Chem. 30 (1983) 1;
(g) G. Giuffrida, S. Campagna, Coord. Chem. Rev. 135 (1994) 517;

(c) M.J. Frisch et al., GAUSSIAN 98, Revision A.6, Gaussian, Inc., Pittsburgh, PA, 1998;

(b) D.M. Alessandro, F.R. Keene, Dalton Trans. (2004) 3950;

(b) See also J. Poppe, M. Moscherosch, W. Kaim, Inorg. Chem. 32 (1993) 2640;