Analysis of some observable effects of weak neutral currents coupled to charged leptons

R. S. Patil, S. H. Patil, and S. D. Rindani
Physics Department, Indian Institute of Technology, Bombay-76, India
(Received 11 June 1974)

We have analyzed the parity-violating effects in the processes \(e + \bar{e} \rightarrow k_1 + k_2 + X \), \(k_1 + k_2 \rightarrow e + \bar{e} + X \), and \(e + \bar{k}_1 \rightarrow e + k_2 + X \), where \(e, \bar{e} \) are the electron, positron states, \(k_1, k_2 \) are the hadron states, and \(X \) is the inclusive hadron state, due to the possible coupling of weak neutral currents to charged leptons. We estimate that for gauge theories of the weak interaction, the parity-violating asymmetry parameter for the distribution in \(e + \bar{e} \rightarrow \pi^+ + \pi^- + \pi^0 \) may be of the order of 5% in the resonance region of the \(A_1 \) meson and experimentally observable.

The need for understanding weak neutral currents has become imperative with two recent developments: One is the possibility of obtaining a unified renormalizable theory of electromagnetic and weak interactions with gauge fields\(^1\) which in most cases imply weak neutral currents. The other is the tentative evidence for these currents in the observation\(^2\) of a large number of events of the type
\[
\nu(\nu) + N \rightarrow \nu(\bar{\nu}) + \text{hadrons,}
\]
where \(N \) is the nucleon. The neutral currents, if they exist, would also play an important role in the understanding of mass differences within multiplets and some rare weak decays. However, for a complete understanding of weak neutral currents, the confirmation of neutral currents in (1) would have to be supplemented by a knowledge of the nature of the coupling of these currents to charged leptons. Unfortunately, the analysis of the coupling to the charged leptons is made difficult by the presence of electromagnetic coupling, which at low energies is larger than the weak coupling by a factor of about \(10^5 \).

There are two possible ways of making the effect of the coupling of weak neutral currents to charged leptons relatively important. One is to study high-energy processes where the energies involved are comparable to or greater than the large masses involved in the weak interaction and where electromagnetic and weak interaction strengths are expected to become of the same order. For example, at energies around 10 GeV, the weak neutral-current effects are expected to be about 10% of the electromagnetic-current effects.

Another way to enhance the effect of weak currents is to consider processes involving resonances such as the \(A_1 \) or \(B \) (assumed to be 1\(^+\)) which couple to the weak neutral currents but not to electromagnetic currents. The electromagnetic effect can be further suppressed by choosing a kinematic region forbidden by electromagnetic interaction. We explicitly demonstrate these features for the process
\[
e + \bar{e} \rightarrow \pi^+ + \pi^- + \pi^0,
\]
and show that the weak parity-violating effects are about 5% and may be experimentally observable.

We first consider the general reactions
\[
e + \bar{e} \rightarrow k_1 + k_2 + X, \tag{3}
\]
\[
k_1 + k_2 \rightarrow e + \bar{e} + X, \tag{4}
\]
\[
e + k_1 \rightarrow e + k_2 + X, \tag{5}
\]
where \(k_1 \) and \(k_2 \) stand for two strongly interacting particles with masses \(m_1 \) and \(m_2 \), and momenta \(k_1 \) and \(k_2 \), and \(X \) is the "inclusive" hadron state. We present the general kinematic results for the weak neutral-current effects for these processes and point out the critical variables most suited for the study of parity violation. In the latter part we give a detailed analysis of the electromagnetic and weak contributions to the reaction (2) in the \(A_1 \) region, and show that for the momenta of the \(\pi^+ \) and \(\pi^- \) nearly parallel in the center-of-mass (c.m.) frame of \(e\bar{e} \), the cross section for the reaction is experimentally observable and the parity-violating effect is about 5% in terms of the asymmetry parameter which we define later.

In our analysis, a scalar intermediate boson (i.e., Higgs boson) will not give any asymmetry in the distributions discussed.
\[
e + \bar{e} \rightarrow k_1 + k_2 + X. \tag{6}
\]
The reaction may proceed via the photon or the weak intermediate vector boson. The corresponding lepton vertices are taken to be
\[
V_\mu = e\bar{\nu}(p_2)\gamma_\mu u(p_1), \tag{6}
\]
\[
U_\mu = \overline{\nu}(p_2)\gamma_\mu(a - ib\gamma_5)\nu(p_1), \tag{7}
\]
where the strengths of \(a \) and \(b \) depend on the model...
ANALYSES OF SOME OBSERVABLE EFFECTS OF WEAK...

...and the Weinberg mixing angle. We will, for simplicity, take them to be of the order of e. We define

$$L_{\mu \nu} = \sum_{\text{spin}} V_{\mu}^* V_{\nu}$$

$$= e^2 \left(\frac{1}{4} \varepsilon \right) (p_{1\mu} p_{2\nu} - p_{1\nu} p_{2\mu} - p_{1\mu} p_{2\nu} - p_{1\nu} p_{2\mu} e_{\mu \nu}) ,$$

where m is the lepton mass, taken to be small, and the hadron structure functions

$$V_{\mu \nu} = \sum_{x, \text{spin}} \langle k_1, k_2, x | J_\mu^e(0) | 0 \rangle \langle k_1, k_2, x | J_\nu^e(0) | 0 \rangle \frac{(2\pi)^3}{k_1 k_2} \delta^4(k_1 + k_2 + X - p)$$

$$= \left(g_{\mu \nu} - \frac{p_\mu p_\nu}{p^2} \right) W_1 + \left(k_{1\mu} - \frac{k_{1\nu} p_{1\nu}}{p^2} p_{\nu} \right) \left(k_{1\nu} - \frac{k_{1\mu} p_{1\mu}}{p^2} p_{\mu} \right) W_2$$

$$+ \left(k_{2\mu} - \frac{k_{2\nu} p_{2\nu}}{p^2} p_{\nu} \right) \left(k_{2\nu} - \frac{k_{2\mu} p_{2\mu}}{p^2} p_{\mu} \right) W_3 + \varepsilon_{\mu \alpha \beta \gamma} p_\alpha k_{1\beta} k_{2\gamma} e_{\nu \rho \delta} p_\delta k_{1\epsilon} k_{2\eta}$$

$$U_{\mu \nu} = \sum_{x, \text{spin}} \langle k_1, k_2, x | J_\mu^W(0) | 0 \rangle \langle k_1, k_2, x | J_\nu^W(0) | 0 \rangle \frac{(2\pi)^3}{k_1 k_2} \delta^4(k_1 + k_2 + X - p)$$

$$= \left(g_{\mu \nu} - \frac{p_\mu p_\nu}{p^2} \right) B_1 + \left(k_{1\mu} - \frac{k_{1\nu} p_{1\nu}}{p^2} p_{\nu} \right) \left(k_{1\nu} - \frac{k_{1\mu} p_{1\mu}}{p^2} p_{\mu} \right) B_2$$

$$+ \left(k_{2\mu} - \frac{k_{2\nu} p_{2\nu}}{p^2} p_{\nu} \right) \left(k_{2\nu} - \frac{k_{2\mu} p_{2\mu}}{p^2} p_{\mu} \right) B_3 + \varepsilon_{\mu \alpha \beta \gamma} p_\alpha k_{1\beta} k_{2\gamma} e_{\nu \rho \delta} p_\delta k_{1\epsilon} k_{2\eta}$$

$$A_{\mu \nu} = \sum_{x, \text{spin}} \langle k_1, k_2, x | J_\mu^{WA}(0) | 0 \rangle \langle k_1, k_2, x | J_\nu^{WA}(0) | 0 \rangle \frac{(2\pi)^3}{k_1 k_2} \delta^4(k_1 + k_2 + X - p)$$

$$= \varepsilon_{\mu \alpha \beta \gamma} p_\alpha k_{1\beta} k_{2\gamma} \left(k_{1\nu} A_3 + k_{2\nu} A_3 + p_{\alpha} A_3 \right) + \varepsilon_{\mu \alpha \beta \gamma} p_\alpha k_{1\beta} k_{2\gamma} \left(k_{1\nu} A_4 + k_{2\nu} A_4 \right)$$

where J^e, J^W, J^{WA} are the electromagnetic, weak vector, and weak axial-vector currents, respectively, $p = p_1 + p_2$, W_i, B_i, and A_i are functions of $s = p^2$, $M^2 = X^2$, $s_1 = (p - k_1)^2$, $s_2 = (p - k_2)^2$, $s_3 = s_1 + s_2 = s + M^2 + m_1^2 + m_2^2 - s_1 - s_2$, and k_1

$$= m_i/k_{i\alpha}$$

for fermions and $1/2k_{i\alpha}$ for bosons. In expression (11), the B_i and B_i terms are not present if the weak vector current is conserved. The cross section for the reaction (3) is given by

$$\sigma = (2\pi)^3 \left[\frac{m^2}{(p_{1\alpha} p_{2\alpha} - m^2)^2} \right] \int d^4 k_1 \int d^4 k_2 \delta(k_1^2 - m_1^2) \delta(k_2^2 - m_2^2) 2k_{1\alpha} 2k_{2\alpha} h_1 h_2$$

$$\times \left[\frac{1}{s} L_{\mu \nu} V_{\mu \nu} \frac{1}{m^2} \left(\frac{2}{e} L_{\mu \nu} A_{\mu \nu} + N_{\mu \nu} U_{\mu \nu} \right) \right]$$

where m_ν is the mass of the neutral intermediate vector boson, and where we have retained only the leading parity-violating term from the weak interaction. The integrals can be simplified in the c.m. system of e^\pm to the form

$$\sigma = \frac{(2\pi)^3}{s} \frac{\pi}{16s(2\pi)^2} \int dS_1 \int dS_2 \int dM^2 \int_{-\pi}^{\pi} d\cos \theta \int_{\pi}^{\pi+1} d\phi 2k_{1\alpha} 2k_{2\alpha} h_1 h_2 \Delta \sigma,$$
Here all the variables are in the c.m. system of e^2; $k_{t0} = \frac{s + m_1^2 - s_1}{2s_{1/2}}$, $|\vec{k}_1|^2 = k_{t0}^2 - m_2^2$, $\cos\theta_{12} = \frac{2k_{t0} \cdot s_2 + s_1 - s - M^2}{2|\vec{k}_1||\vec{k}_2|}$ (θ_{12} being the angle between \vec{k}_1 and \vec{k}_2), $\vec{k}_1 \times \vec{k}_2$ is taken as the z axis and $-(\vec{k}_1 + \vec{k}_2)$ as the x axis, θ and ϕ are the polar and azimuthal angles of \vec{k}_1; ϕ_1 and ϕ_2 are the azimuthal angles of \vec{k}_1 and \vec{k}_2, respectively, and $\beta_1 = \phi_1 - \phi$. The ranges of integration are, for M^2: $(\sqrt{s} - m_1 - m_2)^2$ and 0; for s_1: $(\sqrt{s} - m_1 - m_2)^2$ and $(M + m)^2$; for s_2: $M^2 + m_2^2 + 2(k_{t0} X_0 \pm |\vec{k}_1||\vec{k}_2|)$, where $X_0 = \frac{s_1 + M^2 - m_2^2}{2s_{1/2}}$, $k_{t0} = \frac{s - m_1^2 - s_1}{2s_{1/2}}$. Note that changing θ to $\pi - \theta$ leaves $\Delta \alpha$, unchanged but changes the sign of $\Delta \alpha$, so that we have parity-violating asymmetry about the (\vec{k}_1, \vec{k}_2) plane. We define an asymmetry parameter $A = \sum_{\theta_0 < \theta < \pi - \theta_0} \frac{\Delta \alpha}{\Delta \alpha}$, which gives a measure of parity violation in the kinematic region of interest for $\theta_0 < \theta < \pi$. One could also discuss asymmetry in the azimuthal angle with respect to the x axis taken along $-(\vec{k}_1 + \vec{k}_2)$ and the y axis along $\vec{k}_1 \times \vec{k}_2$ here the asymmetry is the difference in the distribution of events at ϕ and $2\pi - \phi$. Later, we will discuss in detail the asymmetry for the $\pi^+\pi^-\pi^0$ final state.

$k_1 + k_2 = e + \bar{e} + X$. The kinematics of this reaction is quite similar to the one just discussed. The cross section is given by

$$
\sigma = \frac{(2\pi)^2}{4s} \frac{(k_{t0} h_1)(k_{t0} h_2)}{([k_1 \cdot k_2]^2 - m_1^2 m_2^2)^{1/2}} \frac{4m^2}{(2j_1 + 1)(2j_2 + 1)} \times \int \frac{d^4p_1 d^4p_2 \delta(p_1^2 - m_1^2)\delta(p_2^2 - m_2^2)}{(2\pi)^4} e^2 \left[\frac{1}{\beta^2} L_{\mu\nu} V^{\mu\nu} + \frac{2}{m_w^2} \left(\frac{\alpha}{e} L_{\mu\nu} A^{\mu\nu} + N_{\mu\nu} U^{\mu\nu} \right) \right], $$

where j_1, j_2 are the spins of particles k_1 and k_2, and $L_{\mu\nu}, V_{\mu\nu}, A_{\mu\nu}, N_{\mu\nu}$ are defined in (8)-(12). In terms of the variables $s = (k_1 + k_2)^2, M^2 = X^2, S_1 = (k - p_1 p_2)^2, S_2 = (k - m_1)^2, S_3 = s + M^2 + 2m_1^2 - s_1 - s_2, p = p_1 + p_2$, and $k = k_1 + k_2$, the integrals simplify in the c.m. system of k_1, k_2 to the form

$$
\Delta \sigma = \Delta \alpha_1 + \Delta \alpha_2,
$$

$$
\Delta \alpha_1 = \frac{4s^2}{s_3} [-s_3 W_1 + (2k_1 \cdot p_1 k_1 \cdot p_2 - \frac{1}{2} s_1 m_2^2)W_3 + (2k_2 \cdot p_1 k_2 \cdot p_2 - \frac{1}{2} s_2 m_1^2)W_4
+ (\frac{1}{2} s_3 |\vec{p}|^2 - 2p_{10} \cdot p_{20} \sin^2 \theta_{12})s |\vec{k}_1|^2 \sin^2 \theta W_4],
$$

$$
\Delta \alpha_2 = \frac{3es_{1/2}}{s_3 m_w} p_{10} p_{20} |\vec{k}_1| \sin \theta_{12} \sin \phi \Re \left[a k_1 \cdot (p_1 - p_2) (A_1 + A_0) + a k_2 \cdot (p_1 - p_2) (A_2 + A_4) + iB_0 \right].
$$
ANALYSIS OF SOME OBSERVABLE EFFECTS OF WEAK...

Here,

\[k_1 \cdot p_1 = p_{10}(k_{10} - |k_1| \cos \theta \cos \phi), \]

\[-|k_1| \sin \theta \sin \phi, \]

\[k_2 \cdot p_1 = p_{10}(k_{20} + |k_2| \cos \theta \cos \phi), \]

\[+ |k_2| \sin \theta \sin \phi, \]

\[k_{10} = \frac{s + m_1^2 - m_2^2}{2s}, \quad k_{20} = \frac{s + m_2^2 - m_1^2}{2s}, \]

\[p_{10} = \frac{s - s_1}{2\sqrt{s_1}}, \quad p_{20} = \frac{s - s_2}{2\sqrt{s_2}}, \]

Note that for \(\phi = 2\pi - \phi_i \), \(\Delta \sigma \) remains unchanged, while \(\Delta \sigma \) changes its sign, so that we have parity-violating asymmetry about the \((\vec{p}_1, \vec{p}_2)\) plane.

We define

\[B = \sum_{\phi_1 > \phi_0} \frac{\Delta \sigma - \sum_{\phi_1 > \phi_0} \Delta \sigma}{\sum_{\phi_1 > \phi_0} \Delta \sigma + \sum_{\phi_1 < \phi_0} \Delta \sigma}, \]

which gives a measure of parity violation in the region of interest for \(\phi_1 > \phi_0 \).

It may be pointed out that the parity-violating effect may be enhanced by studying the reaction for \(s_3 \), where \(m_A \) is the \(A \) mass, since the \(A \) amplitudes are larger in this region.

\[e + k_1 + e + k_2 + X. \]

The cross section for this process is given by

\[\sigma = \frac{2(2\pi)^2(2k_{10}h_1)(2k_{20}h_2)}{16(s - m_1^2)16(s + m_1^2)} \int d^4k \int d^4p_0 \frac{1}{(2\pi)^4} \text{Re} \left[\frac{1}{p^2} \frac{L_{\mu\nu}V^\mu\nu}{m_A^2} \frac{2}{m_A^2} \right], \]

where \(j_i \) is the spin of particle \(k_i \), and the tensors \(L_{\mu\nu}, V_{\mu\nu}, N_{\mu\nu}, U_{\mu\nu} \) are as in (8)-(12) except that now \(p - p_1 - p_2 \). Here, the dependence of the differential cross section on the Treiman-Yang angle \(\phi \) is the most revealing.

In the c.m. system of the final hadron state, i.e., \(\vec{k}_1 + \vec{k}_2 = 0 \), the cross section is

\[\sigma = \frac{(2\pi)^4(2k_{10}h_1)(2k_{20}h_2)}{(2\pi)^4} \frac{1}{16(s - m_1^2)} \int d^4k \int d^4p_0 \frac{1}{\sqrt{s_1}} \int_0^{11} d\cos \theta \int_0^{2\pi} d\phi \Delta \sigma, \]

where \(s = (p_1 + k_2 \cdot p, t = q^2 = (p_1 - p_2)^2, M^2 = X^2, s_1 = (q + k_1)^2, \Delta \sigma = \Delta \sigma_1 + \Delta \sigma_2, \]

\[\Delta \sigma_1 = \frac{2(m_A^2)}{(2\pi)^4} \left(W_1 + (2p_1 \cdot k_2) + \frac{1}{2} |k_2|^2 \right), \]

\[\Delta \sigma_2 = \frac{2(m_A^2)}{(2\pi)^4} \left(|k_2| |k_3| \sin \theta \sin \phi \Re \left[ak_1 \cdot (p_1 + p_2)(A_1 + A_2) + ak_2 \cdot (p_1 + p_2)(A_3 + A_4) + 2ibB_5 \right] \right), \]

where

\[k_2 \cdot p_2 = k_2 \cdot p_1 - k_2 \cdot p, \]

\[k_1 \cdot p_1 = \frac{1}{2}(s - m_1^2), \quad k_1 \cdot p_2 = \frac{1}{2}(s + t - s_1), \]

\[k_2 \cdot p_1 = p_{10}k_{20}, \]

\[-p_{10}|k_2| (\cos \theta \cos \phi, \sin \theta \sin \phi \cos \phi), \]

\[p_0 = |k_2| - k_{10}, \quad p^2 = t, \]

\[X_0 = \frac{s_1 + M^2}{2\sqrt{s_1}}, \quad p_{10} = \frac{s - s_1}{2\sqrt{s_1}}, \]

Here, the \(z \) axis is along \(\vec{F}_1 \), \((\vec{F}_1 \times \vec{F}_2) \) is along the
y axis, θ and φ are the polar and azimuthal angles of \(\vec{k}_y \), and \(\vartheta_1 \) is the polar angle of \(\vec{p}_1 \). The ranges of integration are, for \(M^2 : (\sqrt{s} - m_\pi^2) \) and 0; for \(s_1 : s \) and \((M + m_\pi)^2 \); for \(t : -(s - m_\pi^2)(s - s_1)/s \) and 0. For \(\phi - 2\pi - \phi \), \(\Delta \sigma_1 \) remains unchanged while \(\Delta \sigma_2 \) changes sign so that we have parity violation about the \((\vec{p}_1, \vec{p}_2)\) plane. As before we define an asymmetry parameter \(C \),

\[
C = \sum_{\Delta \sigma_1} \frac{\Delta \sigma - \sum_{\Delta \sigma_2} \Delta \sigma_2}{\sum_{\Delta \sigma_1} \Delta \sigma} \frac{\Delta \sigma}{\Delta \sigma_2 - \sum_{\Delta \sigma_2} \Delta \sigma_2} \frac{\Delta \sigma}{\Delta \sigma_1 - \sum_{\Delta \sigma_1} \Delta \sigma} \frac{\Delta \sigma_2}{\Delta \sigma_1} = \frac{\Delta \sigma_2}{\Delta \sigma_1} \tag{21}
\]

which gives a measure of parity violation in the region of interest \(\vartheta_1 > \varphi > \vartheta_0 \).

We now consider the evaluation of the asymmetry parameter \(A \) for the reaction \(e^+e^- \rightarrow \pi^+ + \pi^- \). The general forms for the coupling of \(\varpi^+ \), \(\varpi^- \), and \(\varpi^0 \), with momenta \(k_1 \), \(k_2 \), and \(k_3 \), respectively, to the photon and the intermediate vector boson are given by

\[
A = \frac{1}{16\pi^2} \int ds_1 \int ds_2 \int d\cos \theta \int d\phi \left(e^{2i/2} |E_1 \times E_2|^2 \sin^2 \theta |f|^2 \right.
- \frac{e}{2m_w} e^{i/2} |E_1 \times E_2| \sin 2\theta
\times \text{Re} \left((g^1 - g^3) |E_1| \cos (\phi_1 - \phi) + (g^2 - g^3) |E_2| \cos (\phi_2 - \phi) \right),
\]

where

\[
|E_1 \times E_2|^2 = \frac{s_1 s_2 s_3}{4s} - \frac{s_1 \mu^2}{4} + \frac{\mu^4}{2} - \frac{\mu^2}{4s}.
\]

The scalar function \(f \) is estimated by saturating the vertex with the \(\omega \) meson (the \(\phi \) pole is neglected since its coupling to \(3\pi \) is suppressed), so that we have

\[
f = \frac{em_A^2 \sin \theta}{\sqrt{2}} \left(s - m_\omega^2 \right) f_0 \left(\sum_{f_0} \frac{1}{s_f - m_\rho^2 + i\Gamma_1} \right), \tag{27}
\]

where \(m_\omega \) is the \(\omega \) mass and \(\vartheta_\omega \) is the mixing angle for the vector nonet. The constant \(f_0 \) can be estimated from the \(\omega \) decay width and comes out to be \(f_0^2/4\pi \approx 2/\mu^2 \). Similarly the scalar functions \(g_i \) are estimated by saturating the axial-vector vertex with the \(A_1 \) meson pole, which gives

\[
(k_1 k_2 k_3 |J^\mu(0)|0) = \frac{f \epsilon_{\mu\nu\rho\sigma} k_{1\nu} k_{2\rho} k_{3\sigma}}{(2\pi)^2 (2k_1 k_2 k_3)} \tag{22}
\]

\[
(k_1 k_2 k_3 |J^\nu(0)|0) = \frac{f \epsilon_{\mu\nu\rho\sigma} k_{1\nu} k_{2\rho} k_{3\sigma}}{(2\pi)^2 (2k_1 k_2 k_3)} + \frac{k_1 k_2 k_3 g_1 + k_2 k_3 g_2 + k_3 k_1 g_3}{(2\pi)^2 (2k_1 k_2 k_3)} \tag{23}
\]

so that for this case,

\[
W_1 = W_2 = W_3 = 0,
\]

\[
W_4 = |f|^2 \delta \left[(p - k_1 - k_2)^2 - \mu^2 \right],
\]

and

\[
B_1 = f f^* \delta \left[(p - k_1 - k_2)^2 - \mu^2 \right],
\]

\[
B_4 = f f^* \delta \left[(p - k_1 - k_2)^2 - \mu^2 \right] \tag{24}
\]

where \(\mu \) is the pion mass. The resulting cross section is

\[
\sigma = \frac{1}{16\pi^2} \int ds_1 \int ds_2 \int d\cos \theta \int d\phi \left(e^{2i/2} |E_1 \times E_2|^2 \sin^2 \theta |f|^2 \right.
- \frac{e}{2m_w} e^{i/2} |E_1 \times E_2| \sin 2\theta
\times \text{Re} \left((g^1 - g^3) |E_1| \cos (\phi_1 - \phi) + (g^2 - g^3) |E_2| \cos (\phi_2 - \phi) \right),
\]

where \(g_i = \frac{e m_A^2 (g_i / f_0)}{(s - m_\omega^2)(s_1 - m_\rho^2 + i\Gamma_1)} \tag{28} \)
<\frac{1}{2}\pi, \theta<\frac{1}{2}\pi, and 4\mu^2<s_1<10\mu^2 yields
\begin{equation}
\lambda = 4.5\% \tag{29}
\end{equation}
and
\[\sum \Delta\sigma = 10^{-34} \text{ cm}^2, \]
which should be experimentally observable. Of course, as mentioned earlier, the actual numbers will depend upon the numerical values of \(a \) and \(b \), which in turn depend upon the weak-interaction model and the mixing parameter. They are also rather rough estimates, depending on the \(\omega, A_i \) decay widths and pole dominance. However, we expect the general features of our analysis to remain valid and the numerical prediction to be meaningful. It would indeed be very interesting to verify the existence or the nonexistence of these parity-violating effects experimentally. The experiments are feasible.

One of us (S.H.P.) would like to thank Dr. Probir Roy of T.I.F.R. (Bombay) for a discussion which led to a correction of an error in our work. The other two authors (R.S.P. and S.D.R.) would like to acknowledge the financial support from the Council for Scientific and Industrial Research.