Interprocedural Slicing of Multithreaded Programs with Applications to Java

MANGALA GOWRI NANDA
IBM, India Research Laboratory
and
S. RAMESH
Indian Institute of Technology, Bombay

Slicing is a well-known program reduction technique where for a given program P and a variable of interest v at some statement p in the program, a program slice contains those set of statements belonging to P that affect v. This article presents two algorithms for interprocedural slicing of concurrent programs—a context-insensitive algorithm and a context-sensitive algorithm. The context-insensitive algorithm is efficient and correct (it includes every statement that may affect the slicing criterion) but is imprecise since it may include certain extra statements that are unnecessary. Precise slicing has been shown to be undecidable for concurrent programs. However, the context-sensitive algorithm computes correct and reasonably precise slices, but has a worst-case exponential-time complexity. Our context-sensitive algorithm computes a closure of dependencies while ensuring that statements sliced in each thread belong to a realizable path in that thread.

A realizable path in a thread with procedure calls is one that reflects the fact that when a procedure finishes, execution returns to the site of the most recently executed call in that thread. One of the novelties of this article is a practical solution to determine whether a given set of statements in a thread may belong to a realizable path. This solution is precise even in the presence of recursion and long call chains in the flow graph.

The slicing algorithms are applicable to concurrent programs with shared memory, interleaving semantics, explicit wait/notify synchronization and monitors. We first give a solution for a simple model of concurrency and later show how to extend the solution to the Java concurrency model. We have implemented the algorithms for Java bytecode and give experimental results.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Features; D.3.4 [Programming Languages]: Processors—Compilers, optimization

General Terms: Algorithms, Design

Additional Key Words and Phrases: Multithreading, data dependence, interference dependence, context-sensitivity, strongly connected regions, program slicing
1. INTRODUCTION

Slicing is a program reduction technique that is useful in debugging [Agrawal et al. 1993], program maintenance [Gallagher and Lyle 1991], Y2K compliance transformations [Nanda et al. 1999], reverse engineering [Beck and Eichmann 1993], program testing [Harman and Danicic 1995] and applications that involve understanding program behavior. The slice of a program with respect to a program point \(p \) and a variable \(x \), consists of all statements and predicates of the program that might affect the value of \(x \) at point \(p \) [Weiser 1984]. More details may be found in Binkley and Gallagher [1996] and Tip [1995].

In this article we show how to compute the interprocedural slice of concurrent programs. We consider two models of concurrency - a simpler model where concurrency is represented by the classical \texttt{cobegin-coend} [Dijkstra 1968] statements and the Java concurrency model.

The original slicing algorithm by Weiser [Weiser 1984] was based on iterative data flow analysis. Subsequently Ottenstein and Ottenstein [Ottenstein and Ottenstein 1984] introduced the notion of slicing using Program Dependence Graphs (PDG). A PDG is a graph in which nodes, representing assignments and conditions in the program, are connected by control and data dependence edges. The slice is defined with respect to a given node in this graph as the set of all the nodes on which the given node is directly or transitively dependent. Thus, given the PDG, the slice can be computed by a simple reachability algorithm [Ottenstein and Ottenstein 1984; Horwitz et al. 1989].

Venkatesh [Venkatesh 1991] classifies static slicing algorithms as “executable” and “closure” slices. Closure slices contain the set of statements that are related to the variable of interest through a closure of dependences and are not necessarily either syntactically correct or executable programs, that is, programs which on execution preserve the behavior of the original program. Weiser’s [1984] algorithm produces executable slices. However, his algorithm does not produce precise slices for programs with procedures since it fails to account for the calling context of procedures. Horwitz et al. [1990] were the first to address the issue of calling contexts and gave a closure based context-sensitive slicing algorithm for slicing programs with procedures. Papers on generating semantically correct slices for sequential programs include Harman et al. [2003], Yang et al. [1992], and Binkley et al. [1995]. In this article, we present a closure algorithm for generating context-sensitive slices for concurrent programs. This work appeared in the Ph.D. dissertation of the first author [Nanda 2001].

In slicing programs, there are two main issues:

(1) \textit{Correctness}. A slice is correct if it includes, at least, all the program statements that affect the criterion. In the extreme case, the complete program is always a correct slice. A slice is incorrect if it excludes some program statements that should be in the slice.

(2) \textit{Precision}. Given two correct slices, one slice is more precise than the other if it contains fewer program statements.

Ideally, one would like to compute the correct slice that is the most precise. But this is, in general, not computable [Weiser 1984; Müller-Olm and Seidl
Hence, we try to compute a slice that is correct and as precise as possible. There are three main sources of imprecision in closure based interprocedural slicing of concurrent programs—(1) interprocedural paths are not transitive, (2) interference dependence is not transitive and (3) backwards reachability in a dependence graph may give imprecise results.

(1) A realizable path is one that corresponds to a legal call/return sequence where each return statement brings control back to the point just after the corresponding procedure call was made [Sharir and Pnueli 1981]. Interprocedural paths may not be transitive. A realizable path from \(n_1 \) to \(n_2 \) and a realizable path from \(n_2 \) to \(n_3 \) does not imply that \(n_1, n_2 \) and \(n_3 \) lie along a realizable path. The problem of intransitivity of paths in interprocedural slicing of sequential programs has been solved by Horwitz et al. [1990]. A context-sensitive slice is one that computes only those nodes that lie on a realizable path to the node that represents the slicing criterion. It has been shown [Harman et al. 2003], that a context-sensitive slice may be more precise than a context-insensitive slice.

(2) Interference dependence arises when a node uses a variable that was defined in a parallel executing thread. Interference dependence is not transitive. Consider two nodes \(n^1_{1i} \) and \(n^1_{1k} \) in a thread \(\theta_1 \) and a node \(n^2_{1j} \) in a thread \(\theta_2 \). An interference dependence from \(n^1_{1i} \) to \(n^2_{1j} \) and an interference dependence from \(n^2_{1j} \) to \(n^1_{1k} \) does not imply a dependence from \(n^1_{1i} \) to \(n^1_{1k} \) unless there is a path from \(n^1_{1i} \) to \(n^1_{1k} \) in \(\theta_1 \). This problem was first identified and solved by Krinke [Krinke 1998].

(3) Müller-Olm and Seidl [2001] show that backward reachability in the dependence graph can give sub-optimal results when slicing concurrent programs. This is because of a further weakness in interference dependence. Their results show that an interference dependence from \(n^1_{1i} \) to \(n^2_{1k} \) and an interference dependence from \(n^2_{1j} \) to \(n^1_{1k} \) does not imply a dependence from \(n^1_{1i} \) to \(n^1_{1k} \) even if there is a path from \(n^1_{1i} \) to \(n^1_{1k} \) in \(\theta_1 \). This is because the definition at \(n^1_{1i} \) may get killed along concurrent threads.

In this article, we present a context-sensitive slicing algorithm for concurrent programs. Due to the limitations of backward reachability in the presence of interference dependences, our algorithm generates a conservative slice. A conservative slice is one that includes every node that is required as well as some unnecessary nodes.

In order to compute a context-sensitive slice it is necessary to ensure that nodes sliced in a particular thread form a realizable path in that thread.\(^1\) We give a practical solution to determine whether a given set of nodes belonging to a thread lie on a realizable path in that thread. We call this the “Realizable Path” problem. A more formal definition is given in Section 5. We give a precise solution to the realizable path problem. Essentially, we collapse every strongly connected region in the call graph into a single node each. On the resultant acyclic interprocedural call graph, we generate a topological ordering of the nodes that performs a virtual inlining of called procedures. The topological ordering renders the interprocedural call graph into an equivalent intraprocedural call graph. Then, when adding a node to a path it is not necessary to

\(^1\)Note that computation of realizable paths pertains to a single thread of a concurrent program.
check the entire path for the existence of a realizable path—it is sufficient to
check it against the previously added node based on the topological numbering.
Thus, path reachability is performed efficiently and precisely.

The context-sensitive algorithm has exponential complexity. We also give a
more efficient but less precise, context-insensitive slicing algorithm. The algo-
rithms are described using the cobegin-coend model of concurrency. However,
we show how to map the Java concurrency model to the cobegin-coend model
(with certain limitations). We have implemented both the algorithms on Java
bytecode and tested them on Java programs (maximum size of 10^5 statements).
Although the context-sensitive algorithm has exponential complexity we found
that, with certain optimizations, it was practical for the programs that we used
for testing.

Recently, Krinke [Krinke 2003] has published a solution to context-sensitive
interprocedural slicing of concurrent programs. To ensure that nodes sliced in
a thread belong to a realizable path, Krinke maintains “callstrings” with each
node in the slice. The callstrings keep track of the calling context. However,
when slicing with callstrings it is not possible to make use of (intra-thread)
summary edges and this makes the algorithm extremely expensive, not only in
terms of maintaining callstrings but also in terms of visiting called procedures
repeatedly for each calling context. Further, the callstrings approach suffers
from combinatorial explosion of the callstrings and is usable only if the length
of the callstrings is limited to 2 or 3 elements—which decreases the precision.
To partially improve the efficiency, Krinke computes a “chop” of the graph be-
tween the slicing criterion and every node in the thread that has an incoming
interference dependence edge. Nodes that are not in the chop may be sliced
using summary edges. However, the remaining nodes must be sliced using the
expensive and imprecise callstring approach. Further, maintenance of chops
may be complex in the case that there are multiple slicing criterion in a single
thread. We compare our algorithm with Krinke’s in Section 10.

An algorithm for interprocedural slicing of concurrent programs has been
presented by Zhao [Zhao 1999]. However, we show that this algorithm is neither
context-sensitive nor correct.

Contributions

—A context-insensitive slicing algorithm for concurrent programs which is cor-
g-rect and has polynomial complexity.
—An algorithm to determine whether a given set of nodes may form a realizable
path in a thread.
—A context-sensitive slicing algorithm for concurrent programs which is com-
paratively more precise but has a worst case exponential complexity.
—Optimizations on the basic context-sensitive slicing algorithm and experi-
mental evaluation of the algorithms.

1.1 Organization

In Section 2, we give some background information about slicing of sequential
and concurrent programs, and in Section 3, we motivate the issues of correctness
and precision of interprocedural slices for concurrent programs. In Section 4, we give a context-insensitive slicing algorithm for a simple concurrency model. Section 5 gives an algorithm to determine whether a given set of nodes form a realizable path. Using this algorithm we extend the context-insensitive algorithm to a context-sensitive solution by ensuring that the nodes sliced in each thread lie on a realizable path in that thread (Section 6). In Section 7, we extend the algorithm to programs with nested threads and threads nested within loops. In Section 8, we extend the algorithm to concurrent Java. We give experimental results in Section 9. Section 10 gives information about related work and Section 11 concludes this article.

2. BACKGROUND

As much work has been done in the area of slicing, we give a brief overview of the current state of the art in sequential and concurrent programs.

2.1 Interprocedural Slicing of Sequential Programs

Unlike intraprocedural slicing, mere reachability produces imprecise slices in programs with procedure calls. The interprocedural slice of a program is computed on the system dependence graph (SDG) using a two-phase algorithm [Horwitz et al. 1990]. Each procedure in the program is represented by a PDG, and the SDG is built by joining the PDGs with special edges. At every procedure there is a formal-in node for each global variable and parameter that may be modified or referenced and a formal-out node for each global variable and parameter that may be modified by the procedure. At each call site, there is an actual-in node for each formal-in node and an actual-out node for each formal-out node. There is a call edge from the call node to the ENTRY node of the called procedure. Parameter-in edges connect corresponding actual-in nodes to formal-in nodes, and parameter-out edges connect formal-out nodes to actual-out nodes. Summary edges connect actual-in nodes to actual-out nodes to represent transitive flow dependencies induced by called procedures. The slicing criterion is a node in the SDG.

Horwitz et al. [1990] circumvent the calling context problem using summary edges in a two-phase slicing algorithm. In the first phase the algorithm identifies the nodes that can be reached from the slicing criterion, s in procedure P, without descending into procedures called by P. The algorithm traverses data, control, summary, call and parameter-in edges and ignores parameter-out edges. In the second phase the algorithm identifies nodes that reach s from procedures (transitively) called by P. The algorithm traverses data, control, summary and parameter-out edges and ignores parameter-in and call edges. The summary edges allow the algorithm to slice across an entire procedure without descending into it.

2.2 Intraprocedural Slicing of Concurrent Programs

Consider the simplest model of concurrent programs that consist of processes or threads which interact via shared variables with atomic memory reads and writes. Threads share the same address space and execute concurrently with
Fig. 1. (a) A threaded CFG with nested threads, (b), (c) threaded CFGs with threads nested within a loop.

each other with complete interleaving semantics. There is no explicit synchronization between the threads. At the language level the classical `cobegin`-`coend` construct is used to express the parallelism. Threads generated by a `cobegin` statement synchronize at the corresponding `coend` statement. There is no other synchronization between the threads. An abstract representation of the concurrent programs is the threaded control flow graph (TCFG) [Krinke 1998] as shown in Figure 1.

Let \(\text{START} \theta_i \) represent the \(\text{START} \) node of a thread \(\theta_i \) and \(\text{START} \theta_j \) represent the \(\text{START} \) node of a thread \(\theta_j \), then the two threads may execute in parallel if the closest common ancestor of \(\text{START} \theta_i \) and \(\text{START} \theta_j \) is a `cobegin` node. We define a function \(|(n_i, n_j)\) to be true for two nodes \(n_i \) and \(n_j \), if they belong to threads that may execute in parallel. Interference dependence is defined as:

Definition 1. A node \(n_1 \) is interference dependent on a node \(n_2 \) if \(n_2 \) defines a variable \(v \), \(n_1 \) uses the variable \(v \), and \(n_1 \) and \(n_2 \) execute in parallel.

The Threaded PDG (TPDG) is an extension of the PDG to concurrent programs. TPDGs capture, besides data and control dependencies, additional dependencies arising out of interference between concurrent execution of threads. Interference dependence is fundamentally different from data or control dependence as it is intransitive. In Figure 1(a), \(K_2 \) is interference dependent on \(N_2 \) and \(N_2 \) is interference dependent on \(K_3 \). Yet \(K_2 \) cannot be dependent on \(K_3 \) in any execution of the program. Hence a slicing algorithm that computes a simple transitive closure on the TPDG could generate an imprecise slice.

2.2.1 The Basic Algorithm. The reachability algorithm can be extended to compute comparatively precise slices [Krinke 1998]. The slicing algorithm
starts at the slicing criterion \(s \) and traverses backwards along data, control and interference dependence edges. At each step the algorithm maintains a tuple of nodes indicating the last node traversed in each thread. When following an interference dependence edge from a node \(n_j \) in a thread \(\theta_j \) to a node \(n_i \) in a thread \(\theta_i \), it checks if there is a path from \(n_i \) to the last node traversed in \(\theta_j \). For example, in Figure 1(a) to find the slice of \(K2 \) in \(\theta_1 \), the algorithm creates the tuple \([\bot, K2, \bot, \bot, \bot]\) which has five elements—one for each thread in the graph. The tuple indicates that \(K2 \) was the last node visited in \(\theta_1 \) and \(\bot \) indicates that no node has been visited in the corresponding thread. \(K2 \) is interference dependent on \(N2 \) in \(\theta_2 \). The node corresponding to \(\theta_2 \) in the tuple is \(\bot \) and so \(N2 \) is added to the slice with the tuple \([\bot, K2, N2, \bot, \bot]\). Next \(N2 \) is interference dependent on \(K3 \) in \(\theta_1 \). The tuple node corresponding to \(\theta_1 \) is \(K2 \) and there is no path from \(K3 \) to \(K2 \) and hence \(K3 \) is rejected from the slice. However, this algorithm is imprecise in the presence of nested threads. \(N2 \) is interference dependent on \(L2 \) in \(\theta_3 \) and \(M2 \) in \(\theta_4 \). The tuple nodes corresponding to \(\theta_3 \) and \(\theta_4 \) are \(\bot \) and so \(L2 \) and \(M2 \) would get added to the slice (which is imprecise).

2.2.2 Nested Threads. Krinke’s algorithm has been extended to handle nested threads and threads nested within loops [Nanda and Ramesh 2000]. We give an informal description of the extensions. To handle nested threads the algorithm is extended as follows. In Figure 1(a) to find the slice of \(K2 \) in \(\theta_1 \), the algorithm creates the tuple \([K2, K2, \bot, K2, K2]\). The node corresponding to \(\theta_1 \) is marked \(K2 \) as this was the last node traversed in \(\theta_1 \). The nodes corresponding to \(\theta_0, \theta_3 \) and \(\theta_4 \) are also marked \(K2 \) since each of these threads may execute sequentially with \(\theta_1 \) (this is required to handle nested threads). \(K2 \) is interference dependent on \(N2 \) in \(\theta_2 \). The tuple node corresponding to \(\theta_2 \) is \(\bot \) and so \(N2 \) is added to the slice with the tuple \([N2, K2, N2, K2, K2]\). Since \(\theta_0 \) executes sequentially with \(\theta_2 \), the tuple corresponding to \(\theta_0 \) is also updated to \(N2 \). The other tuple nodes are not changed. \(N2 \) is interference dependent on \(K3 \) in \(\theta_1 \), \(L2 \) in \(\theta_3 \) and \(M2 \) in \(\theta_4 \). The tuple node corresponding to these threads is \(K2 \). Since there is no path from \(K3 \), \(L2 \) or \(M2 \) to \(K2 \), each of these nodes will be rejected.

2.2.3 Threads Nested in Loops. In Figure 1(b), \(K3 \) is interference dependent on \(L3 \) which is interference dependent on \(K5 \). There is a path from \(K5 \) to \(K3 \) induced by the loop and so the slicing algorithm would add \(K5 \) to the slice of \(K3 \). But it is not possible for \(K3 \) to be transitively dependent on \(K5 \) as the definition at \(K5 \) is killed by the definition at \(L2 \) and the definition at \(L3 \) is killed by the definition at \(K2 \). On the other hand, in Figure 1(c) \(K2 \) is interference dependent on \(L2 \) which is interference dependent on \(K3 \). In this case it is correct to add \(K3 \) to the slice of \(K2 \). To handle threads nested within loops, the algorithm differentiates between data dependences and loop-carried data dependences that cross thread boundaries. In Figure 1(c), there are two edges between \(K2 \) and \(L2 \), an interference dependence edge and a loop-carried data dependence. A loop is induced by a backedge in which the destination dominates the source [Aho et al. 1986]. Let \(n_b \) be the source of the backedge of the loop that induces a loop-carried data dependence. Then each loop-carried data dependence is treated as a traversal through \(n_b \) and tuples are updated accordingly. In addition when
traversing an interference dependence edge from n_i in θ_i to n_j in θ_j, let n_j' be the last node visited in θ_j. Then the reachability test from n_j to n_j' is restricted to paths enclosed within relevant subregions rather than the entire TCFG. The relevant region is defined as the region enclosed between the `cobegin` node that is the closest common ancestor of n_i and n_j and its corresponding `coend` node. Details and proof of correctness may be found in Nanda and Ramesh [2000].

Note that this approach is limited to structured programs as loop-carried data dependence is not defined in irreducible CFGs.

3. MOTIVATION—INTERPROCEDURAL SLICING OF CONCURRENT PROGRAMS

Consider simple concurrent programs with procedures based on `cobegin`-`coend` parallelism where threads are not nested and threads may not be nested within loops. The concurrent program is represented by an *interprocedural threaded control flow graph* (*ITCFG*). A *threaded system dependence graph* (*TSDG*) is an SDG with interference dependence edges (as shown in Figure 2). The complete set of edges, E in the TSDG are the data dependence, control dependence, interference dependence, call, summary, parameter-in and parameter-out edges which are denoted by E_{dd}, E_{cd}, E_{id}, E_c, E_s, E_{pi} and E_{po} respectively. The slicing criterion is defined as a node in the TSDG.

Müller-Olm and Seidl [2001] define for a program point p of a program P, the optimal slice $S_{opt}(p)$ is the set of statements n_i that affect p given that all conditionals in P are interpreted as non-deterministic choices. They have also shown that $S_{opt}(p)$ is not computable.

On the ITCFG, G^* of a concurrent program, we define:

Definition 2. A realizable path in a thread of a concurrent program is a path in which “returns” are matched with corresponding “calls” [Reps et al. 1994].
Definition 3. An interprocedural threaded witness is an ordered sequence of nodes \(\langle n_1, n_2, \ldots, n_k \rangle \) belonging to \(G^* \) such that any subsequence of nodes \(n_{i_1}, n_{i_2}, \ldots, n_{i_k} \) belonging to the same thread, \(\theta_i \), form a realizable path in \(\theta_i \).

Now we define our notion of slice, which is weaker than optimal slices. Informally, the context-sensitive slice \(S(p) \) of a TSDG at a node \(p \) consists of all nodes \(n \) on which \(p \) is transitively dependent in such a manner that only interprocedural threaded witnesses are generated in the slice. \(S(p) \) represents the slice that is both correct and context-sensitive. More formally,

\[
S(p) = \{ q \mid P = \langle n_1, \ldots, n_k \rangle, q = n_1 \xrightarrow{e_1} \cdots \xrightarrow{e_{k-1}} n_k = p, e_i \in E' \}
\]

\(S(p) \) is less precise than \(S_{opt}(p) \) [Müller-Olm and Seidl 2001]. However, we believe that it is a reasonable notion and can be computed. We will give an algorithm, which we call the "context-sensitive algorithm" that exactly computes \(S(p) \). This algorithm has exponential complexity. We also give an efficient algorithm, which we term the "context-insensitive algorithm", that computes a superset of \(S(p) \). Both the algorithms compute correct slices although the context-sensitive algorithm computes more precise slices than the context-insensitive one. We introduce three examples to motivate the issues of correctness and precision.

3.1 Correctness Issues

Consider a simple adaptation of the two-phase algorithm for sequential programs [Horwitz et al. 1990] with extensions for interference dependence, where interference dependence edges are traced in both Phase 1 and Phase 2 in addition to the other standard edges [Zhao 1999]. Applying this algorithm to the node \(K8 \) in Figure 2 yields the following results. In Phase 1, \(K8 \) is data dependent on \(K7 \) which is parameter-out dependent on \(K6 \) in procedure \(P1 \). Therefore, \(K6 \) will be sliced in Phase 2.

In Phase 2, \(K6 \) is data dependent on \(K5 \). \(K5 \) is data dependent on \(K4 \), interference dependent on \(L11 \) and \(L12 \) in procedure \(P2 \) in thread \(\theta_2 \) and interference dependent on \(L7 \) in \(\theta_2 \). \(L12 \) is data dependent on \(L10 \) which is parameter-in dependent on \(L5 \). Since the algorithm is now in Phase 2, \(L5 \) will not be added to the slice. However, \(L7 \) is summary dependent on \(L5 \) and hence \(L5 \) will eventually get added to the slice along with its transitive dependencies. Now consider the dependencies arising from \(L11 \). Of these, \(L11 \) is data dependent on \(L9 \) which is parameter-in dependent on \(L4 \). Since the algorithm is in Phase 2, \(L4 \) will not be added to the slice. As a result \(L4 \) and nodes that are transitively dependent on it (\(L2 \)) will never get added to the slice. Hence the two-phase algorithm gives an incorrect slice.
Fig. 3. Illustrating inter-thread summary edges. The nodes are labeled K_i in θ_0, K_i in θ_1, and N_i in θ_2. The thickened boxes do not show a complete slice but help navigate the relevant nodes in the two-phase slice of K_{12}. The dashed, thickened boxes show some of the nodes that do not get added to the slice. The inter-thread summary edges are notional in the sense that they show the inter-thread transitive dependency, but they are not explicitly computed by any algorithm. The numbers in circles indicate the topological order of the nodes after inlining and are used in the context-sensitive slicing algorithm.

3.1.1 Interthread Summary Edges. Another problem with applying the two-phase algorithm directly is that the summary edges do not adequately represent transitive dependencies in the presence of threads since there may be transitive dependencies that cross thread boundaries. In fact, summary edges are not computable in concurrent programs [Ramalingam 2000].

Consider the slice of K_{12} in Figure 3. In Phase 1, we find that K_{12} is parameter-out dependent on K_{11}. In Phase 2, K_{11} is summary dependent on K_7 and
parameter-out dependent on \(K_{26} \). Further, we trace the following dependencies backwards: \(K_{26} \leftarrow K_{25} \leftarrow N_{4} \leftarrow N_{3} \leftarrow N_{8} \leftarrow N_{7} \leftarrow K_{21} \leftarrow K_{19} \). \(K_{19} \) is parameter-in dependent on \(K_{8} \) but since the algorithm is in Phase 2, \(K_{8} \) will not get added to the slice and nor will any of the nodes that it is dependent on (such as \(K_{2} \)). Similarly, \(K_{9} \) and its dependencies will also not get added to the slice.

Here the problem is that some inter-thread transitive dependencies are missing. There is a transitive dependence from the formal-in node, \(K_{19} \) to the formal-out node, \(K_{26} \), and from \(K_{20} \) to \(K_{26} \) which should induce inter-thread summary edges from \(K_{8} \) to \(K_{11} \) and \(K_{9} \) to \(K_{11} \), respectively. As these are inter-thread transitive dependencies they are not considered by the standard [Horwitz et al. 1990] intra-thread summary edge algorithm. As mentioned earlier, this is not computable.

3.2 Precision Issues

Even if it were possible to compute all summary edges, this algorithm remains imprecise and context-insensitive. In Figure 4(a), we show a program and its ITCFG, and the corresponding TSDG is in Figure 4(b). Consider the slice of \(M_{6} \) in Figure 4. Clearly, \(M_{6} \) is dependent on the call to \(f_{1} \) at \(M_{5} \) but not on the call to \(f_{1} \) at \(M_{11} \). But the simple two-phase algorithm adds \(M_{11} \) to the slice of \(M_{6} \) as follows: \(M_{6} \) is parameter-out dependent on \(M_{21} \) in procedure \(f_{1} \) and \(M_{21} \leftarrow M_{19} \leftarrow N_{3} \leftarrow M_{13} \leftarrow M_{11} \).

It might appear that a naive marriage of Krinke's algorithm and Zhao's algorithm would generate precise context-sensitive slices. However, this is not the case because unlike a single procedure program, paths may not be transitive in programs with multiple procedure calls.

3.2.1 Intransitivity of Interprocedural Paths. Determining whether there is a realizable path between any two nodes in the interprocedural control flow graph of a sequential program is possible using standard techniques of interprocedural control flow analysis of programs [Burke 1990; Callahan 1988]. Let the relation Reach\((n_{i}, n_{j})\) be true if there is a realizable path from \(n_{i} \) to \(n_{j} \) and false otherwise. For example, in Figure 4(a), Reach\((M_{8}, M_{20})\) and Reach\((M_{20}, M_{19})\) are true but Reach\((M_{11}, M_{8})\) is false. In programs with procedure calls, the composition of Reach may not be a realizable path. That is, given that Reach\((n_{a}, n_{b})\) and Reach\((n_{b}, n_{c})\) are true, the composition Reach\((n_{a}, n_{b}) \circ \) Reach\((n_{b}, n_{c})\) does not imply that \((n_{a}, n_{b}, n_{c}) \) is a realizable path. For example, Reach\((M_{8}, M_{20}) \circ \) Reach\((M_{20}, M_{19})\) does not imply that there is a realizable path through \((M_{8}, M_{20}, M_{19})\).

As a consequence, a simple extension of Krinke's algorithm to concurrent interprocedural slicing generates context-insensitive slices. Consider a simple extension of the two-phase algorithm where we keep track of the last node visited in each thread. The slice of \(M_{14} \) in Figure 4(b) would trace the following dependencies: In Phase 1, \(M_{14} \leftarrow M_{12} \leftarrow M_{21} \). In Phase 2, \(M_{21} \leftarrow M_{19} \leftarrow N_{3} \). Since \(N_{3} \) is in \(\theta_{2} \) the algorithm remembers that the last node visited in \(\theta_{1} \) was \(M_{19} \). Next, \(N_{3} \leftarrow M_{20} \). When the algorithm re-enters \(\theta_{1} \) it finds that there
Fig. 4. (a) An ITCFG. The nodes are labeled K_i in θ_0, M_i in θ_1 and N_i in θ_2. The numbers in the circles indicate the topological order of the nodes after inlining the calls. (b) The corresponding TSDG, depicting intransitivity of paths. The darkened nodes trace part of a context-insensitive slice of M_{14}. The darkened dashed node would not be added in a context-sensitive slice.
is a realizable path from M20 to M19 (Figure 4(a)) and so M20 is added to the slice.

Note that the path from M20 to M19 is an interprocedural path that corresponds to an execution of M20 from the call at M5 followed by an execution of M19 from the call at M11. However, the path information has no way of keeping track of the calling contexts associated with each node.

Further, M20 ← N2. On re-entering θ2, the algorithm checks that there is a path from N2 to N3. Now, N2 is interference dependent on M2 and M8. Both have a path to M20 and so both will be added to the slice. But adding M8 violates the realizable path condition. To understand why, observe that the path traced by the algorithm within θ1 is as follows: M8 → M20 → M19 → M21 → M12 → M14. The subsequence of nodes in θ1 is (M8, M20, M19, M21, M12, M14). Although there is a realizable path between every pair of nodes in the sequence, yet the composition of the realizable paths is not a realizable path in θ1.

3.3 Recapitulation

This section has highlighted the following points

— The two-phase algorithm when applied to concurrent programs may give incorrect slices.

— In concurrent programs, computation of summary edges is undecidable as the summary edges in a concurrent program may be induced by cross-thread dependences. Cross-thread dependencies must be computed without using summary edges else some nodes may be missed by a slicing algorithm, resulting in an incorrect slice.

— To compute a context-sensitive slice it is necessary to be able to determine whether a set of nodes belong to a realizable path.

In Section 4, we will explain how to solve the correctness problem. In Section 5, we solve the realizable path problem and in Section 6 we put the two solutions together to compute correct, context-sensitive slices.

4. A CONTEXT-INSENSITIVE SLICING ALGORITHM

In this section we give a fast slicing algorithm which computes correct but possibly imprecise slices. First we make an observation about two-phase slicing of sequential programs (or a single thread of a concurrent program). In a sequential program:

— When computing the slice of a node ni, for every node, nj, that is added to the slice in Phase 1, the slice of nj is available as a subset of the slice of ni that is computed. That is, every node that nj is dependent on gets added to the slice.

— If the node nj is added to the slice in in Phase 2, then only the relevant subset of the calling contexts of nj are added to the slice of ni.

2Note that this algorithm is intra-thread context-sensitive, but inter-thread context-insensitive.
We need to extend the two-phase algorithm to handle inter-thread dependencies. Since inter-thread summary edges are not computable we need to capture these dependencies while traversing interference dependence edges. The basic idea behind the interprocedural slicing algorithm for concurrent programs is as follows:

—A node n_i that is reached via an interference dependence edge needs to be sliced in Phase 1, since we need to find all the nodes that it is dependent on. So whether the interference dependence edge is traversed in Phase 1 or Phase 2, n_i must be sliced in Phase 1. This implies that if an interference dependence edge is discovered during Phase 2, we need to run a subsequent pass in Phase 1 for n_i (and its corresponding Phase 2). This (as we will prove later) also solves the problem of transitive dependencies that cross threads.

—A node n_j that is added to the slice in Phase 2 may be traversed again in a subsequent Phase 1 due to a transitive dependence that includes an interference dependence edge. Then although n_j has been sliced before it will have to be sliced again in Phase 1, since Phase 2 generates only a subset of all the nodes that n_j is dependent on. To handle this we color the nodes with three colors rather than two colors as in the two-phase algorithm.

4.1 The Algorithm

The slicing algorithm essentially puts a loop around the traditional two-phase algorithm [Horwitz et al. 1990]. The purpose of the loop is to ensure that nodes reached via an interference dependence edge are sliced in Phase 1. Our slicing algorithm uses three lists. Each time a node is reached through an interference dependence edge, it is added to the outermost worklist w_0 and subjected to a complete two-phase slice. The algorithm iteratively applies a 2-phase slice to every node in w_0.

Our algorithm uses three colors for marking a node. We call the colors phase1, phase2 and undefined and define a transitive order $\text{undefined} < \text{phase2} < \text{phase1}$ on them. Initially all the nodes in the TSDG are colored undefined.

In Phase 1, for the nodes reached by tracing backwards the data dependence, control dependence, summary dependence, parameter-in dependence, and call dependence edges we check the color of the node. If it has already been colored phase1 we do not need to slice it again, else we color it phase1 and insert it into worklist w_1. For nodes reached via interference dependence edges, if they have been colored phase1 already, we ignore them, else they are colored phase1 and added to the outermost worklist w_0. For a node reached via a parameter-out dependence edge, if it is still colored undefined it is colored phase2 and added to the worklist w_0. If it had already been colored phase1 or phase2 it need not be added to the worklist again.

In Phase 2, also nodes reached via interference dependence edges are colored phase1 and added to w_0 if they are not already colored phase1. Nodes reached via data dependence, control dependence, summary dependence, and parameter-out edges are colored phase2 and added to the worklist w_2 if they
Input: the slicing criterion \(s \), the TSDG
Output: the slice \(S \) = every node in the TSDG that has been colored \texttt{phase1} or \texttt{phase2}
Declare: \texttt{undefined} < \texttt{phase2} < \texttt{phase1}
Initialization:
for each node \(x \in \text{TSDG} \) do
\(x.color = \text{undefined} \)
\(w0 = \{s\} \)
begin
while \(w0 \neq \emptyset \) do
remove next element \(x \) from \(w0 \)
\(w1 = \{x\} \)
/* Phase 1 */
while \(w1 \neq \emptyset \) do
remove next element \(x \) from \(w1 \)
for all \(y | (y,x) \in E_{id} \)
if \(y.color < \texttt{phase1} \) then
\(y.color = \texttt{phase1} \)
\(w0 = w0 \cup y \)
for all \(y | (y,x) \in E_{dd} \cup E_{cd} \cup E_s \cup E_{pi} \cup E_c \)
if \(y.color < \texttt{phase1} \) then
\(y.color = \texttt{phase1} \)
\(w1 = w1 \cup y \)
for all \(y | (y,x) \in E_{po} \)
if \(y.color < \texttt{phase2} \) then
\(y.color = \texttt{phase2} \)
\(w2 = w2 \cup y \)
endwhile
/* Phase 2 */
while \(w2 \neq \emptyset \) do
remove next element \(x \) from \(w2 \)
for all \(y | (y,x) \in E_{id} \)
if \(y.color < \texttt{phase1} \) then
\(y.color = \texttt{phase1} \)
\(w0 = w0 \cup y \)
for all \(y | (y,x) \in E_{dd} \cup E_{cd} \cup E_s \cup E_{po} \)
if \(y.color < \texttt{phase2} \) then
\(y.color = \texttt{phase2} \)
\(w2 = w2 \cup y \)
endwhile
endwhile
end

Fig. 5. The context-insensitive three-color iterated two phase slicing algorithm.

have not already been colored either \texttt{phase1} or \texttt{phase2}. Parameter-in and call edges are ignored.
The final slice consists of every node that has been colored either \texttt{phase1} or \texttt{phase2}. The algorithm is given in Figure 5.

Example 1. Let us slice the program in Figure 2. Initially \texttt{K8} is added to the worklist \(w_0 \). Then \texttt{K8} is extracted and a 2-phase algorithm is applied to it. We
use the shorthand notation “$K_i \leftarrow K_j$” to indicate that K_i is dependent on K_j. The steps are as follows:

— Iteration 1:
 — Phase 1: K_8 is data dependent on K_7 which is parameter-out dependent on
 K_6 in procedure P_1. K_6 is inserted into w_2.
 — Phase 2: In Phase 2, K_6 is data dependent on K_5. K_5 is data dependent on
 K_4, and K_4 is inserted into w_2. K_5 is interference dependent on L_{11} and L_{12}
 in procedure P_2 in thread θ_2. L_{11}, L_{12} and L_7 are inserted into w_0. Next K_4 is sliced. No further dependencies are found and the first iteration ends.

— Iteration 2: In the next iteration, let us assume L_7 is processed.
 — Phase 1: L_7 is parameter-out dependent on L_{13} and therefore L_{13} is added
 to w_2. Then, $L_7 \leftarrow \text{call } P_2 \leftarrow \text{START } \theta_2$. Also $L_7 \leftarrow L_5 \leftarrow L_3$.
 — Phase 2: $L_{13} \leftarrow L_{12}$. But L_{12} is already colored phase1. No other dependencies are found and this completes the second iteration.

— Iteration 3: Let L_{11} be extracted from w_0 in the next iteration.
 — Phase 1: $L_{11} \leftarrow L_9 \leftarrow L_4 \leftarrow L_2$.
 Nothing gets added to w_2 and so the Phase 2 is empty. This completes the iteration.

— Iteration 4: This iteration starts with L_{12} and nothing new is found in the iteration.

Thus, the algorithm generates a correct slice.

Example 2. Consider the slice of K_{12} in Figure 3.

— Iteration 1:
 — Phase 1: $K_{12} \leftarrow K_1 \leftarrow M_4 \leftarrow M_1$. $K_{12} \leftarrow K_{11}$. (K_{11} is added to w_2.)
 — Phase 2: $K_{11} \leftarrow K_7 \leftarrow K_{10}$. $K_{11} \leftarrow K_{26} \leftarrow K_{25} \leftarrow K_{18} \leftarrow K_{17}$. $K_{25} \leftarrow N_4$. (N_4 is added to w_0).

— Iteration 2:
 — Phase 1: $N_4 \leftarrow N_1$. $N_4 \leftarrow N_3 \leftarrow N_8$ (N_8 is added to w_2).
 — Phase 2: $N_8 \leftarrow N_7 \leftarrow N_6 \leftarrow N_5$. $N_7 \leftarrow K_{15}$. $N_7 \leftarrow K_{24}$. $N_7 \leftarrow K_{30}$. $N_7 \leftarrow K_{21}$. All of K_{15}, K_6, K_{24}, K_{30}, K_{21} are added to w_0.

— Iteration 3:
 — Phase 1: $K_{21} \leftarrow K_{17}$. $K_{21} \leftarrow K_{19} \leftarrow K_8 \leftarrow K_2$. Since the algorithm is in
 Phase 1, the parameter-in edge is traversed.

— Iteration 4:
 — Phase 1: $K_{24} \leftarrow K_{22} \leftarrow K_{20} \leftarrow K_9 \leftarrow K_{3}$. $K_{24} \leftarrow K_{31}$ (K_{31} is added to
 w_2).
 — Phase 2: $K_{31} \leftarrow K_{30} \leftarrow K_{29}$. Since the algorithm is now in Phase 2, the
 parameter-in edge to K_4 is not traversed.

— Iteration 5:
 — Phase 1: $K_{30} \leftarrow K_{29}$. $K_{29} \leftarrow K_4 \leftarrow K_5$. $K_{29} \leftarrow K_{22}$. $K_{29} \leftarrow K_{13} \leftarrow K_3$. In
 Iteration 4, K_{30} was colored phase2. In this iteration it is colored phase1 and sliced again. This time the parameter-in edges are also traversed.
Note that the slice computed is correct but not context-sensitive. The call to \(f^2(b) \) at \(K_{14} \) is added to the slice although it is not possible for the value of \(a \) at \(K_{12} \) to be affected by the call at \(K_{14} \). The other unnecessary nodes added to the slice are \(K_{15} \) and \(K_{13} \).

We do not give a formal proof of correctness of the algorithm, but in Appendix B, we give an informal argument based on the proof for the context-sensitive algorithm.

4.2 Complexity

Each node in the graph may be colored at most twice. Hence, the maximum number of nodes handled by the algorithm is \(2N \) and the runtime complexity of the algorithm is \(O(N + E) \), where \(E \) is the number of edges.

The cost of construction is governed by the cost of generating the control dependence, data dependence, interference dependence and summary edges. Control dependence edges are determined on a per-thread basis with additional control dependence edges from a \texttt{cobegin} node to the corresponding \texttt{START} \(\theta_i \) nodes and from \texttt{EXIT} \(\theta_i \) nodes to the corresponding \texttt{coend} node. These can be generated in time linear in the size of the graph [Johnson and Pingali 1993]. Data and interference dependence can be generated using algorithms of Rugina and Rinard [1999], Salcianu and Rinard [2001], and Nanda and Ramesh [2003]. Novillo et al. [1998] further explain how to reduce the number of interference dependence edges in the presence of monitors. The cost of generating summary edges is the same as in sequential programs [Reps et al. 1994].

5. REALIZABLE PATHS IN A SEQUENTIAL THREAD

In the previous section, we showed that the algorithm is context insensitive as it simply includes into the slice all the nodes that are reached during the traversal irrespective of whether all the nodes in a thread form a realizable path. In order to generate a context-sensitive slice it is necessary to determine whether a given set of nodes may form a realizable path. Given a set of nodes that form a realizable path in a thread, we show in this section how to determine whether another node may be added to the set without violating the realizable path condition.

In Figure 6, Reach(S3, K1) and Reach(K1, S8) are true but Reach(S3, S8) is false. Further, consider the realizable path (S4, K1, K2, S5, S9, S10, S11, K1, K2, S12). From this path we see that there is a realizable path from K2 to K1. That is Reach(K2, K1) is true. Similarly, Reach(K1, S9) is true and in this case Reach(K2, S9) is also true. It might appear that the concatenation of the path from K2 to K1 and the path from K1 to S9 may be a realizable path. Yet, there is no realizable path \(K_2 \rightarrow K_1 \rightarrow S_9 \). On the other hand, there is a realizable path \(K_2 \rightarrow S_9 \rightarrow S_{13} \).
We are now ready to state the problem to be solved: *Given a sequential interprocedural control flow graph, G, and a set of nodes n₁, n₂, ... , nₖ belonging to G we wish to find out if there is a realizable path n₁ ↦ n₂ ↦ ... ↦ nₖ*. We term this problem the "Realizable Path" problem.

Given a set of nodes, we wish to identify whether they form a part of a realizable path. A brute force solution would generate all possible realizable paths in the graph using any standard technique [Sharir and Pnueli 1981; Reps et al. 1994] and then check if the given set of nodes forms a subsequence of any one of the realizable paths.

Another solution to the Realizable Path problem could be to inline all the procedures. In Figure 6 we have shown a program with the procedures inlined. Then the problem reduces to the intraprocedural case and can be solved easily. This solution obviously requires unbounded space when there are recursive procedures. Another, not so obvious, problem with this solution is that a given node (for example, K₁ in Figure 6) may occur in multiple locations in the expanded graph. To find a realizable path that includes K₁ we need to trace every path through each location of K₁. In the presence of loops, the length of a path may be unbounded.

In this section, we propose a solution based on interval analysis.

5.1 An Interval-Based Approach

First we introduce some standard terminology. G = (V, E, n₀) is an interprocedural control flow graph (or ICFG) where V represents the set of vertices, E
is the set of edges and \(n_0 \) is the distinguished start node. A region \(R \) of \(G \) is a (possibly interprocedural) subgraph of \(G \) such that an edge \((n_x, n_y) \) of \(G \) is in \(R \) if and only if \(n_x \) and \(n_y \) are both in \(R \). A node \(n_x \) is an entry node of \(R \) if there is an edge \((n_w, n_x) \) of \(G \) such that \(n_w \) is not in \(R \). A node \(n_y \) is an exit node of \(R \) if there is an edge \((n_y, n_z) \) of \(G \) such that \(n_z \) is not in \(R \). A strongly connected region (SCR) is a region such that every node in it is reachable from every other node.

The interval order of the nodes of \(G \) is the order in which they are visited by a reverse postorder traversal (i.e., postorder traversal on the reverse graph, rooted at the EXIT node of the ICFG). If \(G \) is acyclic, then interval order is a topological ordering [Burke 1990]. Let \(\text{NUMBER}(n_i) \) be the topologically ordered number for any node \(n_i \). Then topological order has the interesting property that \(\text{NUMBER}(n_i) < \text{NUMBER}(n_j) \) if \(n_i \) is a predecessor of \(n_j \) in the graph, \(G \).

A call graph of a program is a graph where each procedure is uniquely represented by a single node. There is an edge \((P, Q) \) in the call graph if procedure \(P \) calls procedure \(Q \).

Since every node in a SCR is reachable from every other node in it, it is obvious that we do not need to test for reachability for nodes within a SCR. This is the basis of our algorithm. We find the largest possible interproceduralSCRs in the ICFG and collapse them into single nodes [Burke 1990; Sarkar 1991]. The resultant graph is an acyclic graph and can be ordered in topological order. We use the program in Figure 7 as an example. Briefly, our analysis takes the following steps:

1. Construct the call graph of the program and find the SCRs in this graph. Collapse the SCRs into single nodes to generate the CallSCR graph. Term the nodes in this graph the call strongly connected components or cSCRs. The cSCRs are shown in Figure 8 and internally consist of one or more procedures.

2. Determine the intraprocedural SCRs for each non-recursive procedure as follows: ignore all interprocedural edges, and create a dummy edge connecting a call site to the corresponding return site and then apply any standard algorithm [Cormen et al. 1990] to collapse strongly connected regions into a single node. Call these intraprocedural strongly connected components or intraSCRs for short. They are labeled as \(\chi_i \) in all the figures. Figure 9 shows the intraSCRs of the example program in Figure 7.

3. Mutually recursive procedures form a single node (cSCR) in the CallSCR graph. On the subgraph induced by such a cSCR node (i.e., the set of nodes and edges belonging to the procedures in a cSCR node), apply any standard algorithm to determine the strongly connected components in this subgraph. These SCRs are also termed intraSCRs. (See Example 3 and 4 below.)

4. Finally, we give an algorithm to integrate intraSCRs across procedures to construct the final interprocedural strongly connected components or ISCRs. The ISCRs of the example program are shown in Figure 10. The ISCRs are numbered as \(Z_i \). The component intraSCRs are also shown. The resultant ISCR graph is an ICFG that has no cycles, no recursion and in which each
node represents an ISCR. Next, we inline any procedure that has not been integrated into an ISCR.

Once this set of information has been calculated we can calculate whether a given set of nodes form a realizable path.

Example 3. Consider the case of the self recursive procedure, R1 in Figure 7. The edge from $S22$ (call R1) to the Enter R1 vertex generates an intraSCR containing all the statements between Enter R1 and $S22$. Similarly, the edge from
Fig. 8. (a) The call graph of the program in Figure 7 and (b) the CallSCR graph which is formed by collapsing SCRs in the call graph. Each node in the CallSCR graph is called a cSCR node and contains one or more procedure.

Fig. 9. The intraprocedural and recursion induced strongly connected components (intraSCRs), labeled χ_i and connected by intraprocedural control flow edges. The interprocedural edges have not been shown.
Fig. 10. (a) The ISCR graph for the program in Figure 7 consisting of Interprocedural Strongly Connected Components (ISCRs). \(Z_i\) are the names of the ISCRs, the list of intraISCRs associated with each ISCR are shown as \(\chi_i\) and the numbers in circles represent the topological order of the ISCRs after inlining. (b) The “TopologicalNumber Graph” showing the edges connecting the TopolNumbers.

the Return node to S23 induces another intraSCR and the edge S21 → S23 induces the connection between the two intraSCRs. In Figure 9, these two intraSCRs are labeled \(\chi_{20}\) and \(\chi_{21}\). This is logically correct since every node in \(\chi_{20}\) is reachable from every other node along some recursive path and similarly for \(\chi_{21}\). Also, every node in \(\chi_{21}\) is reachable from every node in \(\chi_{20}\).

Example 4. Consider the multiway recursion in the procedures L, M and N. In the region induced by these procedures we calculate the SCRs. For the
purpose of determining the SCRs within this region we ignore the interprocedural call edge from \texttt{call L} in \texttt{main} to \texttt{Enter L} but not the edge from \texttt{call L} in procedure \texttt{N} to \texttt{Enter L}. That is, we include only those interprocedural call and return edges between the procedures \texttt{L}, \texttt{M} and \texttt{N} that are internal to the cSCR under consideration. From Figure 9, we see that there are two interprocedural SCRs in the region labeled χ_{22} and χ_{23} induced by the two interprocedural loops \texttt{Enter L} \rightarrow \texttt{L1} \rightarrow \texttt{L2} \rightarrow \texttt{Enter M} \rightarrow \texttt{M1} \rightarrow \texttt{M2} \rightarrow \texttt{Enter N} \rightarrow \texttt{N1} \rightarrow \texttt{N2} \rightarrow \texttt{Enter L} and \texttt{L3} \rightarrow \texttt{L4} \rightarrow \texttt{N3} \rightarrow \texttt{N4} \rightarrow \texttt{M3} \rightarrow \texttt{M4} \rightarrow \texttt{L3}. There is an external edge from \texttt{call L} in the main procedure to χ_{22} and an external edge from χ_{23} to \texttt{S12} in \texttt{main}.

5.2 Building the ISCR Graph

This section gives details of step (4) given above. After performing steps (1), (2) and (3), each procedure in the ICFG (including \texttt{main}) consists of intraSCRs connected by control flow edges. The procedures are also connected by call and return edges as in the original ICFG. An intraSCR that has multiple ICFG nodes has clearly been generated by merging ICFG nodes in a loop and is termed a multi-node intraSCR. An intraSCR node that has exactly one ICFG node is termed a singleton intraSCR.

We now try to combine as many intraSCRs (across all procedures) as possible into a single \textit{interprocedural SCR} or ISCR. The algorithm is very simple. The algorithm walks through the collapsed ICFG starting with the \texttt{Enter main} node in the \texttt{main} procedure. For each multi-node intraSCR that contains a call site ($P \rightarrow Q$), we delete the call edge and insert the intraSCRs in Q into the parent ISCR. Then we traverse the call SCR graph from Q and insert all the intraSCRs in the procedures that are called directly or transitively from Q. Since a procedure may be integrated from multiple locations, this process may have to be repeated from each location. To avoid this, we use the CallSCR graph to cache the list of nodes reachable transitively from a procedure. The algorithm works in two phases.

In the first phase, we walk through the CallSCR graph, starting at the root (the cSCR representing the \texttt{main} procedure) and build the cache for each procedure. The algorithm is given in Figure 11. In the second phase we start with the \texttt{main} procedure and walk through the intraSCR graph and integrate as many intraSCRs as possible into a single ISCR. Each intraSCR has an attribute \texttt{multi} which is true if the intraSCR has multiple nodes (i.e., it has at least one internal edge) and is false otherwise (if it is a singleton node). The corresponding ISCR also inherits this attribute. (This is used by the Reach algorithm in Section 5.3.) A call statement may be part of a multi-node intraSCR or it may belong to a singleton intraSCR. If it is a single statement, then the corresponding ISCR generated from it is marked to be of type \texttt{CALL_SITE} and we introduce a dummy ISCR after it and label it to be of type \texttt{RETURN_SITE} with attribute \texttt{multi} set to false. If the call statement is part of a multi-node intraSCR, then the called procedure is integrated into the current ISCR and the call edge will be deleted.

At the end of this phase, the interprocedural SCRs are in place in the interprocedural SCR graph. The ISCR graph is shown in Figure 10. As we can
procedure CacheTransitive (cSCR cnode)
 if cnode.mark == true then
 return
 cnode.mark = true
 for each procedure P ∈ cnode do
 for each intraSCR q ∈ P do
 cnode.cache = cnode.cache ∪ q
 end for
 for each successor x of cnode do
 CacheTransitive(x)
 cnode.cache = cnode.cache ∪ x.cache
 end for
end procedure

procedure BuildISCRGraph (intraSCR q)
 if q.mark == true then
 return
 q.mark = true
 ISCR = {q}
 ISCR.multi = q.multi
 if q.multi == true then
 for each call site n_x → P in q do
 ISCR = ISCR ∪ P.cache
 delete the edge n_x → P
 end for
 else /* single node */
 if q is a call site n_x → P then
 BuildISCRGraph (P.entryIntraSCR)
 ISCR.type = CALL.SITE
 Introduce a dummy ISCR of type RETURN.SITE with attribute multi = false
 end if
 end if
 for each q_s ∈ successor(q) do
 BuildISCRGraph (q_s)
 end for
end procedure

Fig. 11. Algorithm to build the ISCR graph. In CacheTransitive, cnode is a node in the CallSCR graph. For each procedure P, in the cnode, we find the set of intraSCRs belonging to P and every intraSCR belonging to a procedure (transitively) called by P and cache the set at cnode. In BuildISCRGraph, q is an intraSCR node. If q is a multi-node SCR which has procedure calls, then every intraSCR in the cache of the called procedure is added to the current q to generate the final ISCR node.

see in the ISCR graph, several intraSCRs may be combined into a single ISCR, as for example, \(\chi_1, \chi_{15}, \chi_{16}, \chi_{17}, \chi_{18} \) and \(\chi_{19} \) are all in the ISCR numbered \(Z_1 \). Also, it is possible that a single intraSCR may be tagged to several ISCRs, as for example, \(\chi_{20} \) is tagged to ISCRs labeled \(Z_{10}, Z_{11} \) and \(Z_{15} \). In the example in Figure 10, the procedures P1, P2 and P3 have got integrated into the ISCR labeled \(Z_1 \); procedures L, M and N have generated the two ISCRs \(Z_{17} \) and \(Z_{18} \), but there is a call edge from \(Z_{13} \) to \(Z_{17} \) and a return edge from \(Z_{18} \) to \(Z_{14} \). The case of R1 is interesting. R1 has been integrated into \(Z_{10} \) and \(Z_{11} \) so there is no call edge from \(Z_{10} \) or from \(Z_{11} \). But there is a call edge from \(Z_4 \) and \(Z_7 \) to \(Z_{15} \) and a corresponding return edge from \(Z_{16} \) to \(Z_{5} \) and \(Z_{8} \), respectively.

At this stage, we are assured that the resultant graph is acyclic and the ISCR nodes can be ordered in topological order after inlining all the remaining procedure calls that did not get integrated into an ISCR. We give an efficient method for inlining that does not require making actual copies of the procedures. Briefly,
Fig. 12. The algorithm to generate topological ordering.

```c
/* initialization */ count = 0
for each ISCR z of the ISCR Graph do
  z.top_set = φ; z.mark = false

procedure GenerateTopologicalNumbers ( ISCR z )
  if z.mark == true then return
  for each predecessor z_p of z do
    switch z_p.type
      case RETURN_SITE :
        PushStack (z_p.corres.call_site)
        GenerateTopologicalNumbers (z_p)
        reset marks in called procedure
      case CALL_SITE :
        if z_p == TopStack() then
          PopStack(); GenerateTopologicalNumbers (z_p)
      default :
        GenerateTopologicalNumbers (z_p)
    endswitch
  endfor
  z.number = count ++; z.mark = true
  z.top_set = z.top_set ∪ {z.number}
return
```

Fig. 12. The algorithm to generate topological ordering.

The algorithm walks through the graph in reverse postorder maintaining a stack of the call sites to ensure that only realizable paths are traversed. The nodes are numbered in reverse postorder. A procedure node that is visited more than once gets multiple numbers. So inlining is simulated by the simple expedient of using a single integer to number the position of the inlined procedure in the graph. The topological ordering is shown enclosed in circles in Figure 10 and for ease of exposition we refer to them as “TopolNumbers”. Each ISCR has one or more unique TopolNumbers associated with it. For example, the ISCR Z15 has two TopolNumbers 5 and 10, corresponding to each call site while the ISCR Z17 has only one TopolNumber 18.

The algorithm for generating the topological order uses the following notation: Each node is of type CALL_SITE, RETURN_SITE or DEFAULT. Each ISCR has the following attributes:

— `z.number` holds the value of the latest TopolNumber assigned to the `z` and is initially set to zero;

— The attribute `multi` indicates whether the ISCR has at least one internal edge. If it is true, then it implies that all nodes in the ISCR are reachable from each other (else it is a singleton node).

The algorithm starts with the EXIT node of the ICFG and visits the nodes in reverse postorder. The global variable `count` is initialized to 0. The numbering scheme allows a procedure node to be re-entered for each corresponding call site without looping endlessly or missing any call sites. The call stack ensures that procedures are entered and exited along realizable paths. The algorithm is given in Figure 12.
5.3 The Reach Algorithm

To summarize the construction so far: Each node in the ICFG of a thread belongs to an intraSCR. The intraSCR may be a multi-node intraSCR or a single-node intraSCR. Each intraSCR belongs to one or more ISCRs. Each ISCR is numbered in topological order and may have one or more \texttt{TopolNumbers}. This is equivalent to inlining the ISCRs. Since the \texttt{TopolNumbers} represent a single-procedure program, it is easy to determine reachability on them. We build a \texttt{TopologicalNumber} graph which has as its nodes \texttt{TopolNumbers} and whose edges represent successor/predecessor relationships on the \texttt{TopolNumbers}. The \texttt{TopologicalNumber} graph is shown in Figure 10(b). Once this is generated, we no longer explicitly need the ISCR graph and so its edges can be deleted.

In this section, we explain how to efficiently determine reachability on the \texttt{TopologicalNumber} graph. Given two \texttt{TopolNumbers}, \(t_x \) and \(t_y \), we give an algorithm, Reach to determine whether there is a path from \(t_x \) to \(t_y \). Clearly, if the value of \(t_x \) is larger than that of \(t_y \), then there is no path from \(t_x \) to \(t_y \). A simple solution would be to walk back along the \texttt{TopologicalNumber} graph from \(t_y \) until we reach \(t_x \) or a number smaller than \(t_x \). If we reach \(t_x \), then there is a path, else there is no path. However, the number of \texttt{TopolNumbers} can be exponential in the depth of the call graph and hence this is not an efficient solution. The Reach algorithm shown in Figure 13 performs an optimization that skips across called procedures where possible. As a result, the algorithm’s complexity is linear in the size of the ISCR graph.

The \texttt{TopolNumbers} that represent call and return sites are marked accordingly. In addition, we keep a dummy edge from the \texttt{TopolNumber} associated with a call site to the \texttt{TopolNumber} associated with the corresponding return

```python
procedure Reach ( TopolNumber from, TopolNumber to )
  if from == to then
    return true
  if from > to then
    return false
  if to is a return site then
    callnumber = value of the corresponding call site (using dummy edge)
    if callnumber \leq from then
      /* Skip the called procedure */
      return Reach ( from, callnumber )
    else
      /* Descend into the called procedure */
      prednumber = predecessor of to
      return Reach ( from, prednumber )
  else
    for each predecessor, prednumber of to do
      if Reach ( from, prednumber ) == true then
        return true
  return false
```

Fig. 13. The Reach algorithm.
site. For example, we create a dummy edge from 9 to 12 and from 4 to 7 in Figure 10(b).

The algorithm starts from the TopolNumber with the larger value and walks back along the TopologicalNumber graph. Let the source TopolNumber value be \(t_x \) and the destination TopolNumber value be \(t_y \). When the algorithm reaches a return site, it uses the dummy edge to check if the call site value is smaller than \(t_x \). If the call site value is smaller than \(t_x \), then it descends into the called procedure, else it can use the dummy edge to skip the called procedure and continue traversing backwards from the call site. Thus, the traversal enters a procedure only if \(t_x \) is in the called procedure or in a procedure called (transitively) from the called procedure; otherwise, it keeps going up the TopologicalNumber graph. Thus, the maximum number of TopolNumbers visited by the algorithm is at most the number of ISCRs. The algorithm, Reach, to determine whether there is a path from a TopolNumber \(t_x \) to another TopolNumber \(t_y \) is given in Figure 13. An initial invocation of Reach(\(t_x, t_x \)) trivially returns false if \(t_x \) belongs to an ISCR with attribute multi set to false.

5.4 The Realizable Path Algorithm

The Reach algorithm described in the previous section determines reachability from one TopolNumber to another. However, we need reachability from one node in the ICFG to another. So we determine the set of TopolNumbers that a node can map to and use this as the basis for determining reachability on the nodes of the ICFG. We now present the ValidPath algorithm to determine whether a set of nodes belong to a realizable path. The algorithm for determining the existence of a path is given in Figure 14. As a node belongs to a unique intraSCR, we have a function getIntraSCR(node \(n_i \)) that returns the intraSCR that \(n_i \) belongs to. The procedure GetTopologicalNumberSet(intraSCR) does the following: It finds all the ISCRs that the intraSCR belongs to and returns the set of TopolNumbers associated with these ISCRs. GetTopologicalNumberSet(\(\chi_{20} \)), for example, would find the ISCRs \(Z_{10}, Z_{11} \) and \(Z_{15} \) and the corresponding TopolNumbers set is \((5, 10, 14, 15) \). The overloaded procedure GetTopologicalNumberSet(node \(n_i \)) returns GetTopologicalNumberSet(getIntraSCR(\(n_i \))).

RealizablePath(\(n_i, n_j, \mu \)) returns all possible TopolNumbers associated with \(n_i \) if \(n_j \) is \(\bot \). That is to say that \(n_i \) is the first node visited in a given thread and hence all paths to \(n_i \) are realizable. If \(n_j \) is not \(\bot \), then in RealizablePath(\(n_i, n_j, \mu \)), \(\mu \) is a proper subset of all the TopolNumbers associated with \(n_j \) and represents the valid numbers associated with \(n_j \) at a particular position in the path. The procedure IntraSCRPath(\(q_i, \mu \)) called by RealizablePath locates every TopolNumber associated with \(q_i \) that reaches at least one of the TopolNumbers in \(\mu \). If it returns \(\emptyset \) it implies that there is no realizable path from \(n_i \) to \(n_j \).

Example 5. As an example, we will walk through the algorithm to check if \((S_{24}, S_{20}, S_8) \) in Figure 7 is a realizable path. The nodes are processed in reverse order. \(S_8 \in \chi_{9} \) and therefore \(\mu \) is initialized to the set of TopolNumbers associated with \(\chi_{9} \), which is \((13) \). \(S_{20} \in \chi_{20} \) and the TopolNumbers associated with \(\chi_{20} \) are \((5, 10, 14, 15) \). Of these, we need to check only 5 and 10 since 14 and
15 are larger than 13 and hence cannot precede 13. We have both Reach(5, 13) is true and Reach(10, 13) is true. So now \(\text{newset} \) has (5, 10), which is returned by \(\text{RealizablePath} \). Next we check \(S_{24} \in \chi_{21} \) whose TopolNumbers are (6, 11, 14, 15). Of these none are smaller than 5 and only 6 is smaller than 10 but Reach(6, 10) is false and hence this is not a realizable path.

The correctness of the algorithm follows from the correctness of the \(\text{RealizablePath} \) algorithm. The correctness of the \(\text{RealizablePath} \) algorithm can be stated as

Theorem 1. For any two nodes \(n_i \) and \(n_j \) in the ICFG, \(\text{RealizablePath}(i, j, \mu) \) returns all and only the TopolNumbers associated with \(n_i \) that have a path to some TopolNumber associated with \(n_j \) in \(\mu \).

Since every node belongs to a unique intraSCR node, the correctness of the \(\text{ValidPath} \) algorithm may be stated as

Theorem 2. Given a set of intraSCR nodes and the corresponding set of TopolNumbers \(\langle (q_1, \mu_1), (q_2, \mu_2), \ldots, (q_n, \mu_n) \rangle \), such that \(\mu_n = \text{GetTopologicalNumberSet}(q_n) \) and \(\mu_i = \text{IntraSCRPath}(q_i, \mu_{i+1}) \), for \(1 \leq i < n \), then \(\langle q_1, q_2, \ldots, q_n \rangle \) is a realizable path if and only if \(\mu_i \neq \emptyset \) for \(1 \leq i \leq n \).

Corollary 1. Given a set of intraSCR nodes and the corresponding set of TopolNumbers \(\langle (q_1, \mu_1), (q_2, \mu_2), \ldots, (q_n, \mu_n) \rangle \), such that \(\mu_n = \text{getTopologicalNumberSet}(n_i) \),
GetTopologicalNumberSet(q_n) and \(\mu_i = \text{IntraSCRPath}(q_i, \mu_{i+1}) \), for \(1 \leq i < n \), then \(\langle q_0, q_1, q_2, \ldots, q_n \rangle \) is a realizable path if and only if \(\text{IntraSCRPath}(q_0, q_1, \mu_1) \neq \emptyset \).

Thus, by Corollary 1, it is clear that to add a node to an existing realizable path, it is sufficient to check for a path from the new node to some valid Topo1Number of the last node added to the path. It is not necessary to run ValidPath on the entire set of nodes in the path or even to keep track of all the previous nodes in the path. Thus, the RealizablePath algorithm can be used to incrementally determine whether a set of nodes form a realizable path.

We give a proof of correctness of the RealizablePath algorithm in Appendix A.

5.5 Complexity

Since we are using a form of procedure inlining, the space and time complexity can in the worst case grow exponentially. If there is a long call chain, of length \(y \), where each procedure in the chain is called from \(x \) sites then a procedure at the bottom of the call chain may get inlined \(x^y \) times. However, we use only one integer to represent the inlined procedure and hence we found that the space requirement was practical for our sample programs.

The steps in building the interprocedural SCR graph involve finding SCRs in each procedure and finding SCRs in the call graph. There are standard near-linear algorithms for doing this. Integrating the intraprocedural SCR graphs with the call SCR graph to generate the interprocedural SCR graph requires a single walk through the program and also takes linear time. The algorithm for inlining the procedures and calculating the Topo1Numbers has potentially exponential performance if there are very long chains of procedures that need to be integrated.

The time complexity of the RealizablePath algorithm is linear on the number of Topo1Numbers. However, the number of Topo1Numbers can be exponential in the depth of the call graph, and hence the algorithm has exponential complexity. However, despite this, in practice the algorithm is very fast. We have tested it on several Java benchmark programs and the results are given in Section 9.

6. A CONTEXT-SENSITIVE SLICING ALGORITHM

6.1 The Algorithm

To simplify the presentation, we assume that threads are not nested and threads are not nested within loops. We discuss these extensions in Section 7.1 and 7.2. The context-sensitive algorithm (Figure 15) is an extension of the context-insensitive algorithm with modifications to ensure that only realizable paths are traversed.

The algorithm takes as input the slicing criterion, the ISCR graph of each thread and the TSDG. It starts with the slicing criterion, \(s \), and inserts it into the outermost list \(w_0 \). It keeps extracting a node from \(w_0 \) and applies a 2-phase algorithm to it. The same coloring scheme as in the context-insensitive
Input: the slicing criterion \(s \), the TSDG, the TopologicalNumber graph

Output: the slice \(S \)

\[
\begin{align*}
S &= \emptyset \\
\text{mu} &= \text{GetTopologicalNumberSet}(s) \\
C &= (s, [t_0, \ldots, t_n], \text{phase}1), \left\{ \begin{array}{ll}
\text{if } \theta(s) = \emptyset, \text{ then } t_i, \text{node} = s, \ t_i, \text{mu} = \text{mu} \\
\text{else } t_i, \text{node} = \bot, \ t_i, \text{mu} = \emptyset
\end{array} \right.
\end{align*}
\]

\[w_0 = \{C\}\]

while \(w_0 \neq \emptyset \) do

remove next element from \(w_0 \) and insert into \(w_1 \)

while \(w_1 \neq \emptyset \) do /* Phase 1 */

remove next element \(c = (x, T, \text{color}) \) from \(w_1 \)

for all \(y \mid (y, x) \in E_{id} \)

\[
\begin{align*}
t &= T[\theta(y)].\text{node}, \ \text{mu} = T[\theta(y)].\mu \\
\text{Insert} \ (y, \text{RealizablePath} \ (y, t, \text{mu}), \ T, \text{phase}1, \ w_0)
\end{align*}
\]

for all \(y \mid (y, x) \in E_{dd} \cup E_{cd} \cup E_s \cup E_{ps} \cup E_c \)

\[
\begin{align*}
t &= T[\theta(y)].\text{node}, \ \text{mu} = T[\theta(y)].\mu \\
\text{Insert} \ (y, \text{RealizablePath} \ (y, t, \text{mu}), \ T, \text{phase}1, \ w_1)
\end{align*}
\]

for all \(y \mid (y, x) \in E_{po} \)

\[
\begin{align*}
\text{mu} &= T[\theta(x)].\mu \\
\text{Insert} \ (y, \text{RealizablePath} \ (y, x, \text{mu}), \ T, \text{phase}2, \ w_2)
\end{align*}
\]

endwhile

while \(w_2 \neq \emptyset \) do /* Phase 2 */

remove next element \(c = (x, T, \text{color}) \) from \(w_2 \)

for all \(y \mid (y, x) \in E_{id} \)

\[
\begin{align*}
t &= T[\theta(y)].\text{node}, \ \text{mu} = T[\theta(y)].\mu \\
\text{Insert} \ (y, \text{RealizablePath} \ (y, t, \text{mu}), \ T, \text{phase}1, \ w_0)
\end{align*}
\]

for all \(y \mid (y, x) \in E_{dd} \cup E_{cd} \cup E_s \cup E_{po} \)

\[
\begin{align*}
\text{mu} &= T[\theta(x)].\mu \\
\text{Insert} \ (y, \text{RealizablePath} \ (y, x, \text{mu}), \ T, \text{phase}2, \ w_2)
\end{align*}
\]

endwhile

endwhile

procedure \(\text{Insert} \ (\text{Node: } y, \text{TopolNumberSet}: \text{mu}, \text{Tuple: } T, \text{int color, List: } L) \)

\[
\begin{align*}
\text{if } \text{mu} = \emptyset \text{ then return} \\
T[\theta(y)].\text{node} &= y \\
T[\theta(y)].\mu &= \text{mu} \\
c' &= (y, T, \text{color}) \\
\text{if } c' \text{ has not already been calculated then} \\
S &= S \cup \{y\}, \ L = L \cup \{c'\}
\end{align*}
\]

Fig. 15. The context-sensitive interprocedural slicing algorithm.

Algorithm is applied to the elements of the worklists in the context-sensitive algorithm also.

When adding a node, \(n_i \) in some thread \(\theta_i \), to the slice, we need to check if there is a realizable path in \(\theta_i \) that includes \(n_i \) and the set of nodes already added to the slice in \(\theta_i \). Therefore, when computing the slice we need to carry sufficient information to capture the entire path currently sliced in each thread. A tuple of
nodes containing one node per thread is maintained (similar to the tuples used in the intraprocedural algorithm [Krinke 1998; Nanda and Ramesh 2000]). In the tuple, the node corresponding to a thread is the last node reached (so far) in that thread. Along with the node we also keep the valid set of TopolNumbers associated with the node and the color of the node. So each element in the state tuple consists of three items, (i) the last node visited by the algorithm in that thread, (ii) the valid set of TopolNumbers associated with that node and (iii) the color of the node. When a node n_i in thread θ_i is visited, we update the tuple entry for that thread. Later if the algorithm visits a node, n_j, in the same thread θ_i we check if there is a realizable path from n_j to n_i using the RealizablePath test. If so, n_j is added to the slice (along with the valid set of TopolNumbers) else it is rejected.

We use the notation $\{n_i, (a, b, \ldots, k)\}$ to represent a node numbered n_i with the set of TopolNumbers (a, b, \ldots, k). We use the symbol \bot in the state tuple to indicate that the corresponding thread has not yet been visited. The function $\theta(n_i)$ returns the index of the thread to which n_i belongs.

Example 6. Let us apply this algorithm to θ_{12} in Figure 3. In the figure, the nodes are numbered on the left for identification and the TopolNumbers are in circles on the right. For simplicity, we use the short notation n_i to represent a node and the expanded form $\{n_i, (a, b, \ldots, k)\}$ only at important points.

Iteration 1:

---Phase 1: $\{K12, [(\bot, \emptyset), (K12, (33)), (\bot, \emptyset)]\} \leftarrow K1 \leftarrow M4 \leftarrow M1.$

The notation $\{K12, [(\bot, \emptyset), (K12, (33)), (\bot, \emptyset)]\}$ indicates that the node sliced is $K12$. The state of θ_0 is (\bot, \emptyset) indicating that it has not yet been visited. The state of θ_1 is $(K12, (33))$ indicating that the last node visited in θ_1 was $K12$ and the corresponding valid TopolNumber set is (33). The state of θ_2 is also (\bot, \emptyset) indicating that it has not yet been visited.

$K12 \leftarrow K11.$ ($K11$ is added to w_2.)

$\{K25, [(\bot, \emptyset), (K25, (29)), (\bot, \emptyset)]\} \leftarrow \{N4, [(\bot, \emptyset), (K25, (29)) \langle N4, (4) \rangle]\}.$ ($N4$ is added to w_0). The algorithm records the fact that the last node visited in θ_1 was $K25$ with TopolNumber set (29).

Iteration 2:

---Phase 1: $N4 \leftarrow N1.$ $N4 \leftarrow N3 \leftarrow N8.$ ($N8$ is added to w_2).

---Phase 2: $N8 \leftarrow N7 \leftarrow N6 \leftarrow N5.$

$\{N7, [(\bot, \emptyset), (K25, (29)) \langle N7, (5) \rangle]\} \leftarrow \{K15, [(\bot, \emptyset), (K15, (41)) \langle N7, (4) \rangle]\}.$ In this case, since there is no path from the TopolNumber (41) in θ_1 to (29), this node is rejected by the slice giving a context-sensitive solution.

$N7 \leftarrow K6.$ $N7 \leftarrow K24.$

$\{N7, [(\bot, \emptyset), (K25, (29)) \langle N7, (5) \rangle]\} \leftarrow \{K30, [(\bot, \emptyset), (K30, (8, 25)) \langle N7, (5) \rangle]\}.$ The TopolNumber set of $K30$ is $(8, 25, 38)$ of which there is no path from (38) to (29). Hence RealizablePath returns a subset of the possible TopolNumbers $(8, 25)$ which are the valid numbers for the node at this point in the slice.

$N7 \leftarrow K21.$
All of K_6, K_24, K_30, K_21 are added to w_0.

—Iteration 3:
 —Phase 1: $K_{21} \leftarrow K_{17} \leftarrow K_{10}. K_{21} \leftarrow K_8 \leftarrow K_2$. Since the algorithm is in Phase 1, the parameter-in and call edge is traversed.
 —Phase 2: No nodes were added to w_2 and so there is no Phase 2.

—Iteration 4:
 —Phase 1: $K_{24} \leftarrow K_{22} \leftarrow K_{20} \leftarrow K_9 \leftarrow K_3. K_{24} \leftarrow K_{31} \leftarrow K_{31}$ is added to w_2.
 —Phase 2: $K_{31} \leftarrow K_{30} \leftarrow K_{29}$. Since the algorithm is now in Phase 2, the parameter-in edge to K_4 is not traversed.

—Iteration 5:
 —Phase 1: $\{K_{30}, ((\bot, \emptyset), (K_{30}, (8, 25)), (N_{7}, (5)))\} \leftarrow \{K_{29}, ((\bot, \emptyset), (K_{29}, (7, 24)), (N_{7}, (5)))\}$. Again, a subset of the TopolNumbers is allowed.
 $K_{29} \leftarrow K_{4} \leftarrow K_{5}. K_{29} \leftarrow K_{22}. \{K_{29}, ((\bot, \emptyset), (K_{29}, (7, 24)), (N_{7}, (5)))\} \leftarrow \{K_{13}, ((\bot, \emptyset), (K_{13}, (34)), (N_{7}, (5)))\}$. In this case, K_{13} is rejected as there is no path from (34) to $(7, 24)$. In Iteration 4, K_{30} was colored phase 2. In this iteration it is colored phase 1 and sliced again.

—Iteration 6:
 —Phase 1: $K_6 \leftarrow K_4 \leftarrow K_5$.

Example 7. Consider the slice of M_{14} in Figure 4(b) again. In Figure 4(a), we have shown the topological ordering for each thread in circles on the right end of each node. The numbers are local to a thread. The ISCRs in $f\ x$ have two numbers each corresponding to the two call sites. All others have only one TopolNumber each. The TopolNumbers are also depicted in the corresponding TSDG shown in Figure 4(b).

The algorithm starts by inserting $\{M_{14}, ((\bot, \emptyset), (M_{14}, (30)), (\bot, \emptyset))\}$ into w_0. Here the state tuple associated with θ_0 and θ_2 is (\bot, \emptyset) as these threads have not yet been visited and the state tuple for θ_1 is $(M_{14}, (30))$ indicating that the last node visited in θ_1 was M_{14} and its corresponding valid TopolNumbers set is (30).

—Iteration 1:
 —Phase 1: $M_{14} \leftarrow M_{12} \leftarrow M_{21}$.
 —Phase 2: $M_{21} \leftarrow M_{19} \leftarrow N_3$ in θ_2. The element inserted into w_0 will be $\{N_3, ((\bot, \emptyset), (M_{19}, (9, 23)), (N_{3}, (3)))\}$. The state tuple for θ_0 is still (\bot, \emptyset), for θ_1 it is $(M_{19}, (9, 23))$ indicating that M_{19} was the last node visited in θ_1 and its corresponding valid TopolNumbers are 9 and 23.

—Iteration 2:
 —Phase 1: $N_3 \leftarrow M_{20}$.
 —Phase 3: Make a call to $\text{RealizablePath}(M_{20}, M_{19}, (9, 23))$ returns 10 since $\text{Reach}(24, 9)$ and $\text{Reach}(24, 23)$ are false but $\text{Reach}(10, 24)$ is true. The element inserted into w_0 now is $M_{20}, ((\bot, \emptyset), (M_{20}, (10)), (N_{3}, (3)))$ indicating that not all TopolNumbers associated with M_{20} are now valid.

—Iteration 3:
 —Phase 1: $M_{20} \leftarrow N_2$. Insert $\{N_2, ((\bot, \emptyset), (M_{20}, (10)), (N_{2}, (2)))\}$ into w_0.

— Iteration 4:
— Phase 1: $N2 \leftarrow M8$ and $N2 \leftarrow M2$. However, $\text{RealizablePath}(M8, M20, \langle 10 \rangle)$ returns \emptyset since $\text{Reach}(16, 10)$ is false and hence the algorithm rejects $M8$ from the slice but correctly accepts $M2$ into the slice as $\text{Reach}(2, 10)$ is true.

Proof of Correctness. Let p be the slicing criterion in a given TSDG; let S_p be the slice computed by the algorithm. Then the correctness of the algorithm can be stated as

Theorem 3. $S(p) = S_p$

The proof is given in Appendix B.

6.2 Complexity

In intraprocedural slicing, each node in the slice may be inserted into the worklist $O(n^{t-1})$ times [Nanda and Ramesh 2000], where n is the number of nodes in a thread and t is the number of threads. This gives a slicing complexity of $O(N^t)$, where N is the number of nodes in the graph. A node may be represented by an exponential number of TopolNumbers and for each TopolNumber it may be inserted into the slice an exponential number of times. This makes the complexity of the algorithm doubly exponential $O(N^p)$, where p is the calling depth of the call graph. However, in Section 9, we show that with certain optimizations, the algorithm is practical.

7. EXTENDING THE PROGRAM MODEL

The slicing algorithm essentially requires information regarding (1) whether two threads may execute in parallel, (2) the reachability of one node from another, that is, RealizablePath computation, (3) control dependence, (4) data dependence, and (5) interference dependence. In this section, we show how to compute reachability between nodes in the presence of nested threads and threads nested within loops. In the next section we show how to compute these factors for Java programs.

7.1 Nested Threads

Consider a slice beginning with $K4$ in θ_1 in Figure 16(a). $K4$ is interference dependent on $N2$ in θ_2. $N2$ is interference dependent on $L2$ in θ_3. Since, the thread θ_3 has never been visited before, the algorithm would add $L2$ to the slice although it is clear that $K4$ is not dependent on $L2$. In the intraprocedural slicing algorithm [Nanda and Ramesh 2000], when a node n_i in θ_i is visited, we update every element of the tuple that corresponds to a thread that does not execute in parallel with θ_i. A similar technique is used for interprocedural slicing: if n_i is dependent on some node $[n_j, T_j, color_j]$, the valid TopolNumber set associated with n_i is μ_i, and $color_i$ is determined as explained before, then we create a new tuple $[n_i, T_i, color_i]$ such that
for each thread θ_k
 if $|\langle n_i, n_j \rangle|$ is false then
 $T_i[\theta_k].node = n_i$
 $T_i[\theta_k].\mu = \mu_i$
 $T_i[\theta_k].color = color_i$
 else
 $T_i[\theta_k].node = T_j[\theta_k].node$
 $T_i[\theta_k].\mu = T_j[\theta_k].\mu$
 $T_i[\theta_k].color = T_j[\theta_k].color$

where $|\langle n_i, n_j \rangle|$ has been defined earlier as a function that returns true for two nodes n_i and n_j, if they belong to threads that may execute in parallel. Here we overload the function to $|\langle \theta_i, \theta_j \rangle|$ which returns true if two threads θ_i and θ_j may execute in parallel or false otherwise. Consider the slice of $K4$ in Figure 16(a).

—$K4$ is inserted into w_1 as $[K4, [(K4, \mu(K4), phase1), (K4, \mu(K4), phase1), (\bot, \emptyset, undefined), (K4, \mu(K4), phase1), (K4, \mu(K4), phase1)]]$.

Since, θ_1 executes sequentially with θ_0, θ_3 and θ_4, they are marked in the same way as θ_1.

—$K4$ is interference dependent on $N2$ which is added to the slice as $[N2, [(N2, \mu(N2), phase1), (K4, \mu(K4), phase1), (N2, \mu(N2), phase1), (K4, \mu(K4), phase1), (K4, \mu(K4), phase1)]]$.

Fig. 16. (a) Nested threads and (b) Threads nested within loops.
L2 is interference dependent on N2, L2 belongs to \(\theta_3 \) and the tuple entry for \(\theta_3 \) has \((K_4, \mu_{(K_4)}, \text{phase} 1)\). Since the RealizablePath algorithm is applied only to a single thread we need some way to determine whether there is a path from L2 to K4.

We need some algorithm to determine whether there is a path from a node in some thread \(\theta_i \) to another node in a sequentially executing thread \(\theta_j \). The threaded control flow graph has a properly nested structure and hence it is easy to divide it into a set of regions that have a proper global ordering.

Each thread is broken into a set of single-entry-single-exit regions, where the entry node is either the \textsc{start} \(\theta_i \) node or a \textsc{coend} node and the exit node of the region is either a \textsc{coend} node or the \textsc{exit} \(\theta_i \) node of the thread. In Figure 16(a), \(\theta_0 \) is broken into two regions, \(R_1 \) and \(R_7 \). The region \(R_1 \) has its entry node as S1 (\textsc{start} \(\theta_0 \)) and the exit node is S5 (the \textsc{coend} node). The region \(R_7 \) has the entry node S6 (\textsc{coend}) and the exit node is S8 (\textsc{exit} \(\theta_0 \)). Similarly, \(\theta_1 \) is broken into two regions, \(R_2 \) and \(R_6 \) and the other threads have only one region each.

We calculate reachability for these regions and store the information in bitvectors. A node in a thread may belong to one or more regions. Each \textsc{Topo1Number} of a node maps to a specific region. When we apply \textsc{RealizablePath}(\(n_i, n_j, \mu \)), if \(n_i \) and \(n_j \) belong to different threads then \textsc{RealizablePath}() has the following functionality

- Let \(R_j \) be the regions associated with \(\mu \).
- Let \(R_i \) be a region associated with \(n_i \) that has a path to \(R_j \)
- For every such \(R_i \) return the \textsc{Topo1Numbers} of \(n_i \) that map to some region in \(R_i \) or return \(\emptyset \) if \(R_i \) is empty.

In the example, there is no path from \(R_3 \) (the region to which L2 belongs) to \(R_2 \) (the region to which K4 belongs) and hence, L2 is correctly rejected from the slice.

7.2 Threads Nested within Loops

When threads are nested within loops, loop-carried dependences that cross thread boundaries may give rise to a conservative slice. This has been explained in detail in the context of intraprocedural slicing [Nanda and Ramesh 2000] and a brief summary is in Section 2.2. In intraprocedural slicing, a loop carried data dependence from a thread \(\theta_i \) to \(\theta_j \) is treated as a sequential data dependence even if \(\theta_i \) and \(\theta_j \) may execute in parallel. In addition, reachability between two nodes, \(n_i \) and \(n_j \), is calculated on the region defined by the closest enclosing \textsc{cobegin}-coend construct. However, in interprocedural slicing, we could not find a way to determine reachability within a region and maintain the calling context information that is stored in the \(\mu \) component of each tuple.

Instead, we use the conservative estimate, that any node within a loop is reachable from any other node in the loop. If a loop encloses a \textsc{cobegin}-coend construct, then we create a separate region for the entire loop and every node in the loop belongs to this region. In Figure 16(b) we show the regions created when a \textsc{cobegin}-coend construct is nested within a loop. In the example, \(\theta_1 \) is divided into three regions as shown. We need not determine topological ordering for \(\theta_3 \).
and \(\theta_4 \), as every node in \(\theta_3 \) is reachable from every other node and similarly for \(\theta_4 \). We assign all the nodes within the loop to the same ISCR. The rest of the algorithm remains unchanged.

8. SLICING CONCURRENT JAVA PROGRAMS

Unlike the structured cobegin-coend parallelism construct, Java supports fork-join parallelism, monitors and explicit wait/notify synchronization. The fork-join parallelism affects the \(\|i, j\| \) function, the synchronization gives rise to additional dependencies and monitors affect the interference dependence. In this section we explain how to handle these variations.

8.1 The Control Flow Graph

8.1.1 The Basic Thread Model. Figure 17 shows the ITCFG for a minimalistic producer consumer program written in Java. A method that is used in more than one thread is replicated in each thread. At the call site \(p.\text{start()} \) of an object \(p \) that extends the Thread class or implements the Runnable interface, we create a “fork” node. At a fork node, the parent thread generates a child thread which continues to execute in parallel with the remainder of the parent thread. The child thread continues execution at the run method that \(p \) must implement. In order to map the Java model to the cobegin-coend model, at a fork node, we create two new threads—one for the child thread and one for the parent thread. In Figure 17, \(S26 \) is a fork node where two threads \(\theta_1 \) and \(\theta_2 \) are created. At \(K1 \) in \(\theta_1 \), the main method continues execution and at \(L1 \) in \(\theta_2 \), the \(\text{Producer.run()} \) method gets executed.

8.1.2 Threads Created in Loops and Procedures. A thread may be created multiple times within a program if the thread creation statement occurs within a loop; a recursive call; or if the thread is created within a procedure which is invoked from more than one call site and there is a path from one call site to another. In such cases, we create two representative threads at the fork node, as two threads are sufficient to capture inter-thread communication. For a thread created within a procedure, for each call site, we compute the set of other threads that it may interact with.

8.1.3 Open-Ended Threads. The child thread may be open-ended or it may join the parent thread at some later point. The semantics of an open-ended thread imply that the thread may interfere with any thread that is created subsequently. This gives a conservative estimate of the interference dependence computation and the \(\|i, j\| \) function.

8.1.4 The Semantics of Join. The semantics of a join node are mapped to the semantics of a coend node as follows—in the method that issues the join command, we insert a thread exit node just before the call to join, then create a join node from where the method continues execution. In Figure 17, \(M2 \) is a thread exit node created just before the call to \(O_3.\text{join()} \). \(K5 \) is the join node and it has an incoming edge from \(M2 \) and from \(N7 \) which is the thread exit node for Consumer thread. Mapping a fork node to a join node is achieved.
class Producer extends Thread {
 private Buffer buff;

 public Producer (Buffer b) {
 this.buff = b;
 }

 public void run () {
 buff.val ++;
 }
}

class Consumer extends Thread {
 private Buffer buff;

 public Consumer (Buffer b) {
 this.buff = b;
 }

 public void run () {
 buff.val --;
 }
}

class Buffer {
 int val = 0;
}

class ProducerConsumerTest {
 public static void main (String[] args) {
 Buffer b = new Buffer();
 Producer p = new Producer(b);
 Consumer c = new Consumer(b);
 p.start();
c.start();
c.join();
p.join();
 }
}

Fig. 17. Java threads.
by the pointer and escape analysis [Nanda and Ramesh 2003]. However, the
ITCFG construction has the following limitations: If the fork and join nodes
are in different methods we are unable to construct a suitable join node and
so we conservatively ignore the join command and treat the threads as open-
ended threads. In addition, if the fork-join construct does not generate properly
nested threads, then also we conservatively ignore the join command. For ex-
ample, in Figure 17, if the code in ProducerConsumerTest had been p.join();
c.join(); instead of c.join(); p.join(), then the threads would not have a
properly nested structure and we would have to treat the threads as open-
ended threads.

8.2 The $$\parallel(i, j)$$ Function
In fork-join parallelism, $$\parallel(n_i, n_j)$$ is true if the nearest common ancestor of $$n_i$$
and $$n_j$$, along some path, is a fork node.

Note. The $$\parallel(n_i, n_j)$$ function is conservative and does not take into account
the ordering induced by wait–notify synchronization.

8.3 RealizablePath Computation
RealizablePath computation is explained in Section 5. As in the cobegin-coend
parallelism, we define a set of regions on the control flow graph and determine a
global ordering across the regions. We define a function ThreadRegion($$n_i$$) which
returns the ThreadRegion to which $$n_i$$ belongs. We also compute REACH($$R_i, R_j$$)
over the entry nodes of all the ThreadRegion and store it in small bitvectors.
For example, $$R_j.REACH$$ will have one bit for each ThreadRegion and the bit
for $$R_i$$ will be set if there is a path from $$R_i$$ to $$R_j$$. Then, to find out if there
is a path $$n_i$$ to $$n_j$$ in the ITCFG, we first check if they belong to the same region.
If yes, we apply the RealizablePath algorithm. If not, we need to check if there
is a path from the ThreadRegion to which $$n_i$$ belongs to the ThreadRegion to
which $$n_j$$ belongs (i.e., ThreadRegion($$n_i$$) $$\in$$ ThreadRegion($$n_j$$).REACH).

8.4 Control Dependence
Control dependence is calculated using standard techniques [Horwitz et al.
1990] for intraprocedural and interprocedural analysis. At the inter-thread
level, we generated control dependence edges from the START node of each
thread to the corresponding fork node from which it was generated. In ad-
dition, in Java, exit() statements and statements that throw exceptions can
affect the control dependence of programs with procedure calls [Sinha et al.
1999; Harrold et al. 1998].

8.5 Data Dependence
For every variable that is referenced before it is used in a procedure we need to
create a formal-in node and for every variable that is modified in a procedure
we need to create a formal-out node. In Java, this form of MOD/REF analysis
is achieved using a technique known as escape analysis [Nanda and Ramesh
2003; Whaley and Rinard 1999; Choi et al. 1999]. Since Java supports only call-
by-value parameter passing, only a static variable or a field of a formal reference
parameter may belong to the REF set. These are called EscapeIn variables. Similarly, the MOD set is referred to as EscapeOut. The escape analysis generates EscapeIns and Escape Outs for upwards exposed reads and downwards exposed writes of “escape” variables. The corresponding actual-in and actual-out nodes are also created.

Java has a simple object model in which all reference-type variables point to a heap-allocated object. Thus, the inter-thread pointer analysis converts every field \(v.f \) to the form \(O_i.f \) where \(O_i \) is a symbolic heap location.

For interference dependence we determine which objects escape a thread. Such an object that is assigned in one node and referenced in a parallel executing node, generates an interference dependence edge. For example in Figure 17, three symbolic locations \(O_1, O_2 \) and \(O_3 \) are generated at \(\text{S3, S4 and S14} \). The pointer analysis propagates these locations and determines that at \(\text{N5 and L5} \), the variable \(O_i.val \) is being used and defined. Since \(\text{N5 and L5 may execute in parallel} \), an interference dependence edge is generated from \(\text{N5 to L5 and from L5 to N5} \).

In Java, monitors are defined by the synchronized keyword. For synchronized blocks of code, only downward exposed definitions and upward exposed references are used to determine the interference between threads [Nanda and Ramesh 2003; Novillo et al. 1998].

8.6 Synchronization Dependence

Synchronization primitives wait and notify are handled as follows: Synchronization edges are drawn from a notify node to the corresponding wait nodes. Each object has an implicit lock associated with it. wait is treated as having an implicit read on the lock variable and notify is treated as having an implicit write on the lock variable. Then, the data dependence calculation automatically detects the dependence between a write on a \(O_i.(\text{lock}) \) at the \(O_i.\text{notify} \) statement and a read on \(O_i.(\text{lock}) \) at the \(O_i.\text{wait} \) statement. In addition, a wait statement implies the release of all locks held by the object and hence this is treated as an edge of a monitor section and all definitions reaching the wait statement are downward exposed and visible to other threads.

Analysis based on synchronization dependence [Krishnamurthy and Yelick 1995] may generate a partial order between the synchronized blocks that may further reduce the interference dependence edges.

9. IMPLEMENTATION

Although the complexity of the context-sensitive algorithm is doubly exponential, its performance can be improved by applying optimizations similar to the optimizations for intraprocedural slicing [Nanda and Ramesh 2000].

We start with a brief description of these optimizations for intraprocedural slicing [Nanda and Ramesh 2000]. To slice \(K3 \) in Figure 18, the algorithm would find that \(K3 \) is data dependent on \(K2 \) and insert \(K2 \) with the tuple \([K2, K2, \bot, \bot] \). Next the algorithm may determine that \(K3 \) is interference dependent on \(L2 \) which is interference dependent on \(K2 \). \(K2 \) would be inserted into the worklist again with the new tuple \([K2, K2, L2, \bot] \). In general, a node may be inserted into
a worklist $O(n^{t-1})$ times, where n is the number of nodes in a thread and t is the number of threads.

There is a concept of a less restrictive tuple versus a more restrictive tuple. For example, the tuple $[K2,K2,\bot,\bot]$ is less restrictive than the tuple $[K2,K2,L2,\bot]$. The first tuple says that any node in θ_2 and θ_3 may be visited, whereas the second tuple says that any node in θ_3 may be visited but in θ_2 only those nodes can be visited that have a path to $L2$. For example, although $K2$ is interference dependent on $L3$, the tuple $[K2,K2,L2,\bot]$ would not allow the insertion of $L3$ since there is no path from $L3$ to $L2$ in θ_2. Clearly, the paths that can be traversed from the second tuple is a subset of the paths admissible from the first tuple.

The essence of the intraprocedural optimizations is to ensure that less restrictive tuples are sliced first and more restrictive tuples are discarded. In order to ensure that the slicing algorithm “finds” less restrictive tuples first, the algorithm gives nodes reached via interference dependence edges a low priority.

We extend the same notion to interprocedural slicing as follows: Inside the procedure Insert (Figure 19, 20 in the appendix), let mu have k TopolNumbers t_1, t_2, \ldots, t_k. Instead of creating one worklist element, we create k worklist elements. Each worklist element has one TopolNumber from the set mu. The data structures do not change, except that now in a tuple T, $T[i].\mu$ is either the empty set or it is a set with exactly one element. This is equivalent to inlining the procedures in the ISCR graph. Then, we apply the optimization used in intraprocedural slicing as follows:

1. Given that a node n_i has been inserted into the worklist with a tuple $[(n_1, \mu_1), (n_2, \mu_2), \ldots, (n_k, \mu_k)]$, if it gets a new tuple $[(n'_1, \mu'_1), (n'_2, \mu'_2), \ldots, (n'_k, \mu'_k)]$, where for all i, either n_i is \bot or there is a realizable path from (n'_i, μ'_i) to (n_i, μ_i), then the new tuple is redundant and need not be added to the slice.

Recall that the ISCR graph has no loops and no recursion.
(2) Nodes reached through interference dependence need to be given a low
priority. This is already ensured by the algorithm since nodes reached via
interference dependence edges are placed in the outermost queue which is
processed only after nodes reached through other edges.

The complexity of the algorithm does not change but the running time of the
algorithm was observed to improve on our sample programs.

By breaking each TopolNumber set into its individual components, it might
appear that the number of elements inserted into the worklist is going to in-
crease exponentially. However, note that, by the optimization, if there is a path
from one TopolNumber \(t_i \) to another, \(t_j \) in the set \(mu \), then a worklist element
will be created only for \(t_j \). Only in the case when a procedure is called from
multiple branches of a switch which is not embedded within a loop do we actu-
ally end up inserting a large number of elements into the worklist. In practice,
the improvement in slicing time to be gained by avoiding unnecessary paths,
far outweighs the overhead of breaking the TopolNumber set into individual
worklist elements.

Another practical optimization that we built into our implementation is as
follows: if a thread has no incoming interference dependence edges (i.e., there
is no node in the thread which is the source of an interference dependence
edge) then we need not apply RealizablePath or maintain tuples for any node
in that thread. This thread can never be reached via an interference dependence
edge and hence may be sliced as a sequential thread. With this optimization,
the algorithm reduces to the sequential two-phase algorithm in the absence of
threads or interference dependence edges. The complete algorithm is given in
Appendix C.

9.1 Experimental Results

The algorithms have been tested on a uniprocessor 2.66GHz Intel Pentium 4
workstation with 2GB of memory running under Linux. The algorithms analyze
Java bytecode.

The characteristics of the programs have been described in Table I: \(pc \) is
a simple Producer-Consumer program, \(multi \) is a multithreaded program that
downsloads a web site and all its links so that it can be browsed offline, \(raytracer \)
is a multithreaded ray tracer, \(hanoi \) is an IBM benchmark program, \(Slice \) is a
public domain applet obtained from Eric Ruf's web page [Ruf2000], \(mandelbrot \)
is Simon Arthur's applet to explore the Mandelbrot set, and \(instantdb \) is a
database browser that comes with the InstantDB database. In addition, we ran
our slicer on all the programs in the Java Grande [JavaGrand] suite, but in
the interests of space we include results for one program from each of its three
classes of applications (\(sync \), \(series \) and \(montecarlo \)). We give a break-up of
data based on user code and library code. Note that the degree of concurrency
in our sample programs is quite small and so the experimental results do not
test the limits of scalability that may arise due to higher concurrency.

For the slicing criterion, we chose every node that was the destination of
an interference dependence edge. This resulted in approximately 30 to 2000
slicing criteria depending on the program. The results are given for averages
Table I. Benchmark Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Number of Classes</th>
<th>Methods</th>
<th>Statements</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>User</td>
<td>Lib</td>
<td>User</td>
<td>Lib</td>
</tr>
<tr>
<td>pc</td>
<td>4</td>
<td>148</td>
<td>9</td>
<td>224</td>
</tr>
<tr>
<td>multi</td>
<td>10</td>
<td>148</td>
<td>95</td>
<td>397</td>
</tr>
<tr>
<td>raytracer</td>
<td>8</td>
<td>242</td>
<td>19</td>
<td>577</td>
</tr>
<tr>
<td>slice</td>
<td>13</td>
<td>244</td>
<td>67</td>
<td>678</td>
</tr>
<tr>
<td>hanoi</td>
<td>29</td>
<td>241</td>
<td>104</td>
<td>594</td>
</tr>
<tr>
<td>mandelbrot</td>
<td>18</td>
<td>276</td>
<td>51</td>
<td>727</td>
</tr>
<tr>
<td>instantdb</td>
<td>3</td>
<td>319</td>
<td>34</td>
<td>814</td>
</tr>
<tr>
<td>sync</td>
<td>6</td>
<td>152</td>
<td>52</td>
<td>578</td>
</tr>
<tr>
<td>series</td>
<td>6</td>
<td>152</td>
<td>44</td>
<td>270</td>
</tr>
<tr>
<td>montecarlo</td>
<td>18</td>
<td>160</td>
<td>259</td>
<td>514</td>
</tr>
</tbody>
</table>

Table II. Build Mitime (seconds)

<table>
<thead>
<tr>
<th>Program</th>
<th>CFG + CD + DD + ID</th>
<th>Summary Edges</th>
<th>IntraSCR + ISCR Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Topological Ordering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc</td>
<td>0.48</td>
<td>0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>multi</td>
<td>1.32</td>
<td>0.57</td>
<td>0.04</td>
</tr>
<tr>
<td>raytracer</td>
<td>17.79</td>
<td>3.83</td>
<td>1.01</td>
</tr>
<tr>
<td>slice</td>
<td>17.06</td>
<td>6.74</td>
<td>0.81</td>
</tr>
<tr>
<td>hanoi</td>
<td>45.23</td>
<td>35.16</td>
<td>1.85</td>
</tr>
<tr>
<td>mandelbrot</td>
<td>140.36</td>
<td>94.39</td>
<td>12.24</td>
</tr>
<tr>
<td>instantdb</td>
<td>186.47</td>
<td>64.12</td>
<td>13.17</td>
</tr>
<tr>
<td>sync</td>
<td>19.49</td>
<td>1.25</td>
<td>0.96</td>
</tr>
<tr>
<td>series</td>
<td>4.27</td>
<td>1.45</td>
<td>1.24</td>
</tr>
<tr>
<td>montecarlo</td>
<td>15.72</td>
<td>10.82</td>
<td>5.13</td>
</tr>
</tbody>
</table>

over all the slicing criteria as well as for the criterion node that generated some maximum or minimum size.

In Table II, we give the time to build the various components of the threaded system dependence graph. The first column gives the time to parse the program and calculate the control, data and interference dependence edges. The second column gives the time to build the summary edges. The third column gives the time to build the ISCR graph and to generate the topological ordering for all the threads. Clearly, the time to build the ISCR graph and the TopolNumbers is a small fraction of the total time to build the threaded system dependence graph.

9.1.1 Performance Analysis. In Table III, we give the average and maximum time taken to compute a slice for the context-insensitive algorithm (column “I”), the context-sensitive algorithm without optimizations (column “V”) and the context-sensitive algorithm with optimizations (column “O”). The minimum time, in each case was too small to measure. The computation pace (time per node) was too small to measure. The context-sensitive algorithm without optimizations takes a long time to compute and for many programs it was found to be impractical (i.e., it took more than 20 minutes of CPU time to generate the slice for most nodes).
Table III. Total Time (in seconds) to Slice for the Context-Insensitive Algorithm (I), the Context-Sensitive Algorithm without Optimization (V) and the Context-Sensitive Algorithm with Optimization (O); the Number of Nodes in the Slice for (V) and (O); and Computation Pace (time in seconds per node) for the Context-Sensitive Algorithm with Optimization (O)

<table>
<thead>
<tr>
<th>Program</th>
<th>Total Slice Time</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>V</td>
<td>O</td>
<td>Ave</td>
<td>Max</td>
</tr>
<tr>
<td>pc</td>
<td>0.0</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>multi</td>
<td>0.001</td>
<td>0.02</td>
<td>0.02</td>
<td>0.07</td>
<td>0.006</td>
</tr>
<tr>
<td>raytracer</td>
<td>0.014</td>
<td>0.03</td>
<td>0.12</td>
<td>0.25</td>
<td>0.035</td>
</tr>
<tr>
<td>slice</td>
<td>0.014</td>
<td>0.03</td>
<td>—</td>
<td>—</td>
<td>0.02</td>
</tr>
<tr>
<td>hanoi</td>
<td>0.04</td>
<td>0.08</td>
<td>—</td>
<td>—</td>
<td>0.05</td>
</tr>
<tr>
<td>mandelbrot</td>
<td>0.08</td>
<td>0.11</td>
<td>—</td>
<td>—</td>
<td>0.13</td>
</tr>
<tr>
<td>instantdb</td>
<td>0.11</td>
<td>0.14</td>
<td>—</td>
<td>—</td>
<td>0.20</td>
</tr>
<tr>
<td>sync</td>
<td>0.02</td>
<td>0.03</td>
<td>—</td>
<td>—</td>
<td>0.10</td>
</tr>
<tr>
<td>series</td>
<td>0.002</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.001</td>
</tr>
<tr>
<td>montecarlo</td>
<td>0.03</td>
<td>0.09</td>
<td>—</td>
<td>—</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table IV. Worklist Analysis for the Context-Sensitive Algorithm without Optimization (V) and The Context-Sensitive Algorithm with Optimization (O). Values are for the Slicing Criterion that had the Largest Ratio of Nodes in the Worklist to Nodes in the Slice

<table>
<thead>
<tr>
<th>Program</th>
<th>Max Inserts</th>
<th>Total Elements</th>
<th>Actual Nodes</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per Node</td>
<td>in Worklists</td>
<td>in Slice</td>
<td>V/O</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>V</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>pc</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>82</td>
</tr>
<tr>
<td>multi</td>
<td>97</td>
<td>23</td>
<td>6083</td>
<td>64330</td>
</tr>
<tr>
<td>raytracer</td>
<td>189</td>
<td>17</td>
<td>16547</td>
<td>61696</td>
</tr>
<tr>
<td>slice</td>
<td>18</td>
<td>18</td>
<td>19235</td>
<td>—</td>
</tr>
<tr>
<td>hanoi</td>
<td>58</td>
<td>55</td>
<td>36144</td>
<td>69290</td>
</tr>
<tr>
<td>mandelbrot</td>
<td>55</td>
<td>55</td>
<td>57018</td>
<td>156558</td>
</tr>
<tr>
<td>instantdb</td>
<td>8</td>
<td>71374</td>
<td>50134</td>
<td>59624</td>
</tr>
<tr>
<td>sync</td>
<td>30</td>
<td>17458</td>
<td>24832</td>
<td>16385</td>
</tr>
<tr>
<td>series</td>
<td>85</td>
<td>613</td>
<td>6649</td>
<td>628</td>
</tr>
<tr>
<td>montecarlo</td>
<td>26</td>
<td>34650</td>
<td>33705</td>
<td>32480</td>
</tr>
</tbody>
</table>

Another measurement of the performance of the algorithm is the number of nodes inserted into the worklist. In the context-insensitive algorithm, some nodes get sliced twice as they get colored phase2 and later phase1. Hence, the number of nodes handled by the worklist is greater than the total number of nodes in the slice. In the context-sensitive algorithm, a node may be inserted into the worklist with potentially exponential number of tuples. In Table IV, we give the maximum number of times a single node is inserted into the worklist with a different tuple and the total number of nodes handled by the worklists for the context-insensitive algorithm ("I"), for the context-sensitive algorithm without optimization ("V") and for the context-sensitive algorithm with optimization ("O"). As a base for comparison, we also show the actual number of nodes in the slice (which is the same for context sensitive slice with and without optimizations). In the last column, we show the ratio of nodes handled by the
Table V. Precision Analysis. Average Number of Nodes Sliced in the Context-Insensitive (1) and the Context-Sensitive Algorithms (2) and the Percentage Range in Reduction of Nodes (3)

<table>
<thead>
<tr>
<th>Program</th>
<th>Context-Insensitive (1)</th>
<th>Context-Sensitive (2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc</td>
<td>68</td>
<td>37</td>
<td>40% to 48%</td>
</tr>
<tr>
<td>multi</td>
<td>2010</td>
<td>711</td>
<td>74% to 88%</td>
</tr>
<tr>
<td>raytracer</td>
<td>8079</td>
<td>5574</td>
<td>1.5% to 83.3%</td>
</tr>
<tr>
<td>slice</td>
<td>6695</td>
<td>2911</td>
<td>4.8% to 84.6%</td>
</tr>
<tr>
<td>hanoi</td>
<td>22566</td>
<td>8194</td>
<td>5.8% to 90%</td>
</tr>
<tr>
<td>mandelbrot</td>
<td>34318</td>
<td>17903</td>
<td>2.8% to 78.4%</td>
</tr>
<tr>
<td>instantdb</td>
<td>40420</td>
<td>13079</td>
<td>61.3% to 73.9%</td>
</tr>
<tr>
<td>sync</td>
<td>14604</td>
<td>8101</td>
<td>34.1% to 80%</td>
</tr>
<tr>
<td>series</td>
<td>430</td>
<td>295</td>
<td>23.5% to 46.7%</td>
</tr>
<tr>
<td>montecarlo</td>
<td>22194</td>
<td>11820</td>
<td>32.9% to 46%</td>
</tr>
</tbody>
</table>

worklists to the actual number of nodes in the slice. The values are shown for the slicing criterion that generated the largest ratio (worst case).

Although the total number of nodes handled by the worklists is, in general, a small (< 10) multiple of the number of nodes in the slice, we observe that the number of times a single node is inserted into the slice can be much higher (e.g., a maximum of 189 in raytracer). The improvement due to the optimizations is also clearly visible as a drop in the maximum insertions per node as well as a drop in the total worklist count.

9.1.2 Precision Analysis. In Table V, we show the average number of nodes sliced by the context-insensitive algorithm and the context-sensitive algorithm. (Obviously, there is no difference in precision between the context-sensitive algorithm with and without optimization.) In the last column we give the improvements to be gained by using a context-sensitive algorithm rather than a context-insensitive algorithm. For example, in hanoi the context-sensitive algorithm generated between 5.8% to 90% fewer nodes than the context-insensitive algorithm. The gain in precision from context-insensitive to context-sensitive analysis may be worth the extra computing power.

We also implemented Zhao’s algorithm and found that his algorithm misses nodes in some programs. In the case of the programs raytracer, slice, hanoi and mandelbrot Zhao’s algorithm generated between 0% to 8% fewer nodes than the context-insensitive algorithm, whereas in pc and multi there was no difference between the two algorithms.

9.1.3 The ISCR Graph. In Table VI, we give statistics related to the ISCR graph. It is interesting to note the reduction in the size of the graph when using an interval-based approach. For each program, we give statistics for the thread with the maximum number of ISCRs generated. The table gives the original number of statements in the thread; the number of intraSCRs and ISCRs; and the largest value of a TopolNumber. The maximum number of ISCR nodes visited by a single call to Reach is equal to the maximum number of ISCRs in the graph. As can be seen from the table, the maximum number of ISCRs is much smaller than the largest value of a TopolNumber and hence Reach is very
Table VI. The ISCR Graph

<table>
<thead>
<tr>
<th>Program</th>
<th>LOC</th>
<th>No. of IntraSCR</th>
<th>No. of ISCR</th>
<th>Max Value of a TopolNumber at an IntraSCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc</td>
<td>54</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>multi</td>
<td>55049</td>
<td>2461</td>
<td>1336</td>
<td>13174</td>
</tr>
<tr>
<td>raytracer</td>
<td>207249</td>
<td>4212</td>
<td>1636</td>
<td>20425</td>
</tr>
<tr>
<td>slice</td>
<td>212155</td>
<td>4965</td>
<td>2474</td>
<td>135166</td>
</tr>
<tr>
<td>hanoi</td>
<td>299069</td>
<td>5170</td>
<td>2629</td>
<td>289155</td>
</tr>
<tr>
<td>mandelbrot</td>
<td>449266</td>
<td>6316</td>
<td>3479</td>
<td>703312</td>
</tr>
<tr>
<td>instanldb</td>
<td>527054</td>
<td>7123</td>
<td>4185</td>
<td>488878</td>
</tr>
<tr>
<td>sync</td>
<td>129091</td>
<td>2847</td>
<td>1167</td>
<td>257492</td>
</tr>
<tr>
<td>series</td>
<td>118276</td>
<td>2995</td>
<td>1610</td>
<td>391444</td>
</tr>
<tr>
<td>montecarlo</td>
<td>239018</td>
<td>4208</td>
<td>2150</td>
<td>1269957</td>
</tr>
</tbody>
</table>

fast. The last column gives the maximum number of TopolNumbers associated with a single intraSCR. This governs the number of iterations in the two loops in IntraSCRPath called by RealizablePath.

The maximum number of TopolNumbers is also an indication of the problems of using algorithms based on procedure inlining. Initially we tried using a bitvector solution to compute Reach with one vector for each TopolNumber and in each vector, one bit for each TopolNumber indicating reachability. This would have required 703312×703312 bits (roughly 60GigaBytes of RAM) for mandelbrot. In contrast, we now use one integer for each TopolNumber with a requirement of roughly 2.5 MB (assuming 4 bytes per integer) which is more manageable.

9.1.4 Remarks. The context-insensitive algorithm is very fast and requires little overhead in terms of memory (it does not require calculation of the ISCR graph or topological ordering) but is definitely less precise than the context-sensitive algorithm. The context-sensitive algorithm has exponential complexity, but, in general, few nodes display this exponential behavior and most nodes get inserted into the worklist a small constant number of times. With the optimizations, the algorithm was found to be practical for our sample benchmark programs. Note, however that our sample programs display a low degree of concurrency. We have not tested the limits of scalability that may arise due to higher concurrency.

In our tests, we have analyzed complete programs including all library methods (except native methods). Often we are not interested in slicing library methods. There are standard techniques [Horwitz et al. 1990] for analyzing sequential programs in the absence of library code and it may be possible to extend these techniques to concurrent programs (we leave this for future work) and would considerably increase the speed of slicing. However, our experience has been that while there are rarely errors in library code, errors in user programs often occur due to incorrect usage of library code. Hence, it is important not to neglect library code in the analysis.

In applications such as model checking [Millet and Teitelbaum 1998] and formal verification where it is important to get as small a slice as possible, it may be well worth the additional computation to generate a context-sensitive slice.
9.1.5 Limitations of the Implementation. Our data dependence analysis generates synchronization dependence edges but we do not apply the synchronization analysis to determine a partial order based on wait-notify synchronization. Hence we do not eliminate interference dependence edges based on synchronization analysis. Java supports virtual method calls, so we use type information to refine the call graph. However, we do not support dynamic class loading. This assumption enables us to perform whole program analysis including construction of a static call graph.

10. RELATED WORK

The entire work in this article consisting of context-insensitive and context-sensitive algorithms, along with the correctness proofs and experimental results, appeared as part of the first author’s thesis work, reviewed by an international panel of examiners and approved in November 2001 [Nanda 2001]. Recently, a very similar algorithm has been published [Krinke 2003]. While the basic ideas of path folding and slice computation are the same in Krinke’s article, the underlying methodology in our algorithm is very different. Krinke’s algorithm has been described in the introduction. Essentially he uses callstrings to capture the calling context. The callstrings need to be truncated to 2 or 3 elements to avoid a combinatorial explosion of callstrings. Chops need to be computed between the slicing criterion and every node in the thread that has an incoming interference dependence edge. Nodes that are not in the chop may be sliced using summary edges. However, the remaining nodes must be sliced using the expensive and imprecise callstring approach. Here we would like to add the following remarks: We believe that (1) Our algorithm is more precise since our realizable path algorithm is more precise—it does not suffer from limitations of truncated callstrings; (2) Our algorithm is more efficient – it uses summary edges effectively and has additional optimizations. It may be noted that both approaches handle fork-join conservatively.

For concurrent programs, most of the work on slicing has been done on intraprocedural slicing. Cheng [1993] presents an approach for slicing programs where interprocess communication is channel-based. As Tip [1995] notes, Cheng does not state or prove any property of the slices computed. Krinke [1998] gives a precise slicing algorithm for programs with shared memory. This however becomes imprecise in the presence of nested threads and threads nested within loops. Nanda et al. [2000] give a more efficient slicing algorithm which remains precise in the presence of all program constructs. None of these handle issues such as synchronization and monitors.

Hatcliff et al. [1999] analyze Java programs with monitors and synchronization. They introduce several new dependencies including a ready dependence, where a node, n_i, is ready dependent on another node, n_j, if n_j’s failure to complete could imply that n_i never executes. For example, a wait statement is ready dependent on the corresponding notify statement and all statements that may be reached from a wait statement are ready dependent on the wait statement. However, they ignore the imprecision introduced by the intransitivity of interference dependence. More recently, Ranganath et al. [2004] show how to reduce...
the number of interference dependence edges for concurrent Java programs. Though they do not give experimental results on slicing, this should improve the precision and speed of slicing. Chen and Xu [2001] give an algorithm that handles the imprecision due to interference dependence to some extent. However, they require to inline all procedures that contain the source or destination of an interference or synchronization dependence edge.

Intraprocedural slicing of programs has a limitation in that it is often impractical to slice realistic programs. Procedures need to be inlined causing the control flow graph to grow potentially without bounds. Programs with recursion either cannot be analyzed or are analyzed conservatively.

Millet and Teitelbaum [1999] give an algorithm for slicing Promela. They also use an extension of the SDG but it is not clear whether their algorithm is context-sensitive.

11. CONCLUSION
In this article, we have given a context-insensitive interprocedural solution to slicing concurrent programs that is efficient and correct. Then we have given a context-sensitive interprocedural slicing algorithm for concurrent programs which is both correct and comparatively more precise. We have shown how to extend the analysis to handle nested threads. We have implemented the algorithm for Java programs and give statistics on a set of benchmark programs. Although the context-sensitive solution is exponential in complexity, we show that it may be practical for some programs.

The context-sensitive algorithm may generate conservative results when threads are nested within loops. The limitations of the context-sensitive algorithm are due to the limitations of determining realizable paths in concurrent programs with procedure calls. However, despite the limitations, our experiments show that the context-sensitive algorithm is more precise than a context-insensitive algorithm. We plan to use the output of the slicing algorithm for efficient verification of Java programs, after which we will have a better idea about the usefulness of context-sensitivity versus context-insensitivity.

APPENDIX
A. CORRECTNESS OF REALIZABLE PATH ALGORITHM
In this appendix, we give the proof of Theorem 1, Theorem 2 and Corollary 2 defined in Section 5.4 and restated below for convenience.

Theorem 1. For any two ICFG nodes n_i and n_j in the ISCR graph, RealizablePath (n_i, n_j, μ) returns all and only the TopolNumbers associated with n_i that have a path to some TopolNumber associated with n_j in μ.

Theorem 2. Given a set of intraSCR nodes and the corresponding set of TopolNumbers $\langle q_1, \mu_1 \rangle, \langle q_2, \mu_2 \rangle, \ldots, \langle q_n, \mu_n \rangle$, such that $\mu_n = \text{GetTopologicalNumberSet}(q_n)$ and $\mu_i = \text{IntraSCRPath}(q_i, \mu_{i+1})$, for $1 \leq i < n$, then $\langle q_1, q_2, \ldots, q_n \rangle$ is a realizable path if and only if $\mu_i \neq \emptyset$ for $1 \leq i \leq n$.
COROLLARY 2. Given a set of intraSCR nodes and the corresponding set of Topol-Numbers \((q_1, \mu_1), (q_2, \mu_2), \ldots, (q_n, \mu_n)\), such that \(\mu_n = \text{GetTopologicalNumberSet}(q_n)\) and \(\mu_i = \text{IntraSCRPath}(q_i, \mu_{i+1})\), for \(1 \leq i < n\), then \((q_0, q_1, q_2, \ldots, q_n)\) is a realizable path if and only if \(\text{IntraSCRPath}(q_0, \mu_1) \neq \emptyset\).

By construction, every ITCFG node \(n_i\) belongs to exactly one intraSCR node \(q_i\); every intraSCR node \(q_i\) is part of at least one ISCR node in the ISCR graph. Each ISCR node has at least one TopolNumber associated with it. This follows from the assumption that there is a path from ENTRY to every node in the ICFG and a path from every node to EXIT in the ICFG. The proof uses the following fact: for an intraSCR node \(q_i\), GetTopologicalNumberSet\((q_i)\) returns all the TopolNumbers of all the ISCR nodes in the ISCR graph to which \(q_i\) belongs.

By construction, every intraprocedural and interprocedural loop is collapsed into a single node. Therefore, there are no loops in the ISCR graph. Also, by construction, the topological numbering inlines all the procedures in the ISCR graph. Hence, we have the following lemmas.

LEMMA 1. The ISCR graph has no loops.

LEMMA 2. Topological numbering reduces the program to a single procedure with no loops.

LEMMA 3. For any two TopolNumbers \(t_i\) and \(t_j\) in the ISCR graph \(\text{ Reach}(t_i, t_j)\) is true if and only if there is a path from \(t_i\) to \(t_j\). Also, if there is a path from \(t_i\) to \(t_j\), then \(\text{ Reach}(t_i, t_j)\) is true.

PROOF. This follows from Lemma 1 and Lemma 2.

PROOF OF THEOREM 1. The proof follows from Lemma 3 and the IntraSCRPath\((q_i, \mu)\) algorithm, which returns every TopolNumber of \(t_i \in q_i\) such that \(\text{ Reach}(t_i, t_j)\) is true for some \(t_j \in \mu\) and rejects any TopolNumber of \(t_i\) if \(\text{ Reach}(t_i, t_j)\) is false for all \(t_j \in \mu\).

LEMMA 4. Given any three TopolNumbers \(t_i, t_j, t_k\), a path from \(t_i\) to \(t_j\) and a path from \(t_j\) to \(t_k\) implies there is a realizable path through \(\langle t_i, t_j, t_k \rangle\).

PROOF. By Lemma 2 and by property of intraprocedural paths.

PROOF OF THEOREM 2. By Theorem 1, IntraSCRPath\((q_i, \mu)\) returns a non-empty set if and only if there is a path from some TopolNumber of \(q_i\) to some TopolNumber in \(\mu\). Hence, there is a path from \(q_i\) to \(q_{i+1}\) if and only if \(\mu_i = \text{IntraSCRPath}(q_i, \mu_{i+1})\) and \(\mu_i \neq \emptyset\). If any \(\mu_i\) is the empty set, then there is no path from that \(q_i\) to \(q_{i+1}\) and there cannot be a realizable path. Conversely, if \(\mu_i \neq \emptyset\) for \(i \leq 1 \leq n\), then there is a path from every \(q_i\) to \(q_{i+1}\) and by Lemma 4 there is a realizable path through \(\langle q_1, q_2, \ldots, q_n \rangle\). Hence, the theorem.

PROOF OF COROLLARY 2. By Theorem 2, there is a realizable path through \(\langle q_1, q_2, \ldots, q_n \rangle\). By Theorem 1, there is a path from \(q_0\) to \(q_1\), and by Lemma 4, there is a realizable path through \(\langle q_0, q_1, q_2, \ldots, q_n \rangle\).
Thus, to add a new node to the realizable path, it is sufficient to apply IntraSCRPath to the last node added to the path and its corresponding set of TopolNumbers.

B. CORRECTNESS OF THE CONTEXT-SENSITIVE SLICING ALGORITHM

In this appendix, we give a proof of Theorem 3 defined in Section 6 and restated below.

Theorem 3. $S(p) = S_p$

Definition 5. There is an intra-thread transitive dependence from a node n_i to a node n_j, if there is a sequence of dependencies $n_i \xrightarrow{e_i} \ldots \xrightarrow{e_s} n_j$ such that none of e_i is an interference dependence edge.

Theorem 4. If there is an intra-thread transitive dependence from a FormalIn node to a FormalOut node at a call site of a procedure, then there is a summary edge from the corresponding ActualIn node to the corresponding ActualOut node. Conversely, if there is a summary edge from an ActualIn node to an ActualOut node, then there is an intra-thread transitive dependence from the corresponding FormalIn node to the corresponding FormalOut node [Horwitz et al. 1990].

Lemma 5. A tuple $(n_i, T_i, \text{color}_i)$ is added to the one of the lists w_0, w_1, or w_2, at some stage if and only if there exists a sequence of tuples $(n_i, T_i, \text{color}_i)$, $i = 1, \ldots, n$ that is added to one of these lists where the tuples satisfy the following properties:

1. For $i = n$
 - $n_n = p$
 - $T_n(\theta_j).\text{node} = \bot$ if $\theta_j \neq \theta(n_n)$
 - $T_n(\theta_j).\text{node} = n_n$ if $\theta_j == \theta(n_n)$
 - $\text{color}_n = \text{phase}1$.
2. For $i = 1, \ldots, n-1$, $n > 1$
 - $n_i \xrightarrow{e_i} n_{i+1}$, $e_i \in \{\text{cd}, \text{dd}, c, s, \text{pi}, \text{po}, \text{id}\}$
 - $\text{color}_i \in \{\text{phase1}, \text{phase2}\}$
 - For $j = 1, \ldots, |\theta|$
 - $T_1[\theta_j].\text{node} = T_{i+1}[\theta_j].\text{node}$, if $\theta_j \neq \theta(n_i)$
 - $= n_i$, if $\theta_j == \theta(n_i)$
 - $T_1[\theta_j].\mu = \text{RealizablePath}(n_i, T_{i+1}[\theta_j].\text{node}, T_{i+1}[\theta_j].\mu)$ if $\theta_j \neq \theta(n_i)$
 - $= T_{i+1}[\theta_j].\mu$ if $\theta_j == \theta(n_i)$
 - $T_1[\theta_j].\mu \neq \emptyset$
3. For $i = 1, \ldots, (n-1)$, one of the following holds
 - $e_i \in \{\text{cd}, \text{dd}, s\}$, $\text{color}_i = \text{color}_{i+1}$
 - $e_i = \text{po}$, $\text{color}_i \leq \text{color}_{i+1}$
 - $e_i \in \{\text{pi}, c\}$, $\text{color}_i = \text{color}_{i+1} = \text{phase1}$
 - $e_i = \text{id}$, $\text{color}_i = \text{phase1}$.

1137

Proof. There are two parts to this proof:

"If" part: This is obvious.

"Only If" part: Assume that \((n_1, T_1, color_1)\) is added to one of the lists. We need to show that there exists a sequence of tuples \((n_i, T_i, color_i), i = 1, \ldots, n\) having the desired properties that get added to one of the lists. This follows by computational induction from the following two facts:

1. The tuple \((p, T, phase_1)\) has such a sequence, where \(T[\theta].node = \perp\), for all \(\theta \neq \theta(p)\) and \(T[\theta(p)].node = p\).

2. If every tuple that is already added to one of the lists has such a sequence, then every new tuple that gets added because of these tuples, has a sequence.

(1) is obvious. (2) follows from the fact that the sequence for the new tuple is got from the sequence corresponding to one of the tuples already in the list.

Lemma 6. A node \(n_i\) is colored phase2 if and only if there exists a sequence of tuples \(n_i \rightarrow \cdots \rightarrow n_j \rightarrow n_k\), such that \(n_j\) is a FormalOut node in the same procedure as \(n_i\) and \(n_j\) is also colored phase2; and \(n_k\) is an ActualOut node which may be colored phase1 or phase2 (\(n_j\) is parameter-out dependent on \(n_k\)).

Proof. This follows from Definition 5 and the fact that all nodes reached by interference dependence edges are colored phase1. Hence it is not possible to enter phase2 except via a parameter-out dependence edge originating at an ActualOut node.

Lemma 7. Given a node \(n_j\) and a TopolNumber set \(\mu\) such that \(\mu \neq \emptyset\) and another node \(n_i\) such that \(n_i \rightarrow \cdots \rightarrow n_j\) and for each edge \(e_i\) in the path from \(n_i\) to \(n_j\) we have \(e_i \in \{dd, cd, s, po, c, pi\}\), then \(\text{RealizablePath}(n_i, n_j, \mu) \neq \emptyset\).

Proof. By property of data dependence, control dependence, summary dependence, parameter-out dependence, call dependence and parameter-in dependence, there is a realizable path from \(n_i\) to \(n_j\).

Theorem 5. \(S(p) \subseteq S_p\).

Proof. Assume \(n \in S(p)\), then by definition of \(S(p)\), there is a threaded witness from \(n\) to \(p\). Let the threaded witness be \((n = n_1, n_2, \ldots, n_n = p)\). We shall construct a sequence of tuples \((n_i, T_i, color_i), i = 1, \ldots, n\) that satisfy the property mentioned in Lemma 7, thereby proving the theorem.

Let \(T_n\) and \(color_n\) be as given in (1) of the property of Lemma 5.

Now, we define inductively \(T_i\) given \(T_{i+1}\) for \(i = 1, \ldots, (n - 1)\). For each pair of nodes in the witness, \(n_i\) and \(n_{i+1}\), let \(n_i \xrightarrow{e} n_{i+1}\), where \(e \in E'\), that is, \(e\) is of type 'cd', 'dd', 'c', 'pi', 'po', or 'id' (but not 's'). The definition of \(T_i\) depends upon the type of \(e\). We shall define \(T_i\) for each of these types:

1. \(e\) is 'cd' or 'dd' and \(n_i\) and \(n_{i+1}\) belong to the same thread \(\theta(n_i)\):
 - In the tuple \(T_{i+1}\) associated with \(n_{i+1}\), let \(T_{i+1}[\theta(n_i)].\mu = \mu_{i+1}\). Then at \(n_i\) we have the tuple \(T_i\) such that \(T_i[\theta(n_i)].\mu = \text{RealizablePath}(n_i, n_{i+1}, \mu_{i+1})\).
 - Since \(n_i\) and \(n_{i+1}\) belong to a threaded witness and since \(n_i\) and \(n_{i+1}\) belong
to the same thread, there must be a (realizable) path from \(n_i \) to \(n_{i+1} \) and by Lemma 7, we get \(T_i[\theta(n_i)], \mu \neq \emptyset \). Also from the algorithm, we get \(\text{color}_i = \text{color}_{i+1} \).

(2) \(e \) is ‘id’ (Obviously, \(n_i \) and \(n_{i+1} \) belong to different threads) or case ‘cd’, ‘dd’ such that \(n_i \) and \(n_{i+1} \) belong to different threads:

In the tuple \(T_{i+1} \) associated with \(n_{i+1} \), let \(n' \) be the previous node belonging to \(\theta(n_i) \) in the threaded witness. Then \(T_{i+1}[\theta(n_i)].\text{node} = n' \) and let \(T_{i+1}[\theta(n_i)].\mu \) be \(\mu' \). Then, at \(n_i \) we have the tuple \(T_i \) such that \(T_i[\theta(n_i)].\mu = \text{RealizablePath}(n_i, n', \mu') \). If \(n' \) is \(\perp \) then \(\text{RealizablePath}(n_i, n', \mu') \) will return \(\text{GetTopologicalNumberSet}(n_i) \) and hence is not an empty set. Else, since \(n_i \) and \(n' \) belong to a threaded witness and since \(n_i \) and \(n' \) belong to the same thread, there must be a path from \(n_i \) to \(n' \) and by Lemma 7, we get \(\mu' \neq \emptyset \).

Also from the algorithm, we get \(\text{color}_i = \text{color}_{i+1} \) for ‘cd’ and ‘dd’ and for ‘id’ edges \(\text{color} = \text{phase}1 \).

(3) \(e \) is ‘pi’ : if \(\text{color}_{i+1} \) is phase1 then all the properties of Lemma 5 are met in the same way as item 1. If \(\text{color}_{i+1} \) is phase2, then by Lemma 6 there is a sequence of nodes \(\{n_i, n_{i+1}, \ldots, n_f, n_a\} \), such that all the nodes belong to \(\theta(n_i) \). Further \(n_f \) is a FormalOut node with color phase2, \(n_a \) is an ActualOut node with color phase1 or phase2. Also by Lemma 6, \(n_a \) is in the sequence. Further, by Theorem 4, \(n_a \) is summary dependent on \(n_i \).

Let the state tuple associated with \(n_a \) be \(T_a \) such that \(T_a[\theta(n_i)], \mu = \mu_a \). Then at \(n_i \) we have the tuple \(T_i \) such that \(T_i[\theta(n_i)], \mu = \mu_i = \text{RealizablePath}(n_i, n_a, \mu_a) \). By Theorem 4, there is a path from \(n_i \) to \(n_a \) and by Lemma 7, we get \(\mu_i \neq \emptyset \).

Also from the algorithm, we get \(\text{color}_i = \text{color}_{i+1} \) since there is summary edge from \(n_i \) to \(n_a \).

(4) case ‘c’ : if \(\text{color}_{i+1} \) is phase1 then all the properties of Lemma 5 are met in the same way as for item 1. If \(\text{color}_{i+1} \) is phase2, then by Lemma 6 there is a sequence of nodes \(n_1, n_2, \ldots, n_f, n_a, n_f \), such that \(n_f \) is a FormalOut node with color phase2, \(n_a \) is an ActualOut node with color phase1 or phase2, and \(n_a \) is call dependent on \(n_i \) (by construction).

Let the state tuple associated with \(n_a \) be \(T_a \) such that \(T_a[\theta(n_i)], \mu = \mu_a \). Then at \(n_i \) we have the tuple \(T_i \) such that \(T_i[\theta(n_i)], \mu = \mu_i = \text{RealizablePath}(n_i, n_a, \mu_a) \). By construction, there is a path from \(n_i \) to \(n_a \) and by Lemma 7, we get \(\mu_i \neq \emptyset \).

(5) \(e \) is ‘po’ : \(\text{color}_i \leq \text{color}_{i+1} \) and all the properties of Lemma 5 are met in the same way as for item1.

Now construct the tuples \((n_i, T_i, \text{color}_i), i = 1, \ldots, n \). It is easy to see that this sequence satisfies the required properties of Lemma 5. Hence the theorem.

Theorem 6. \(S_p \subseteq S(p) \). If a node \(q \) is added to the slice \(S_p \), then it is in \(S(p) \)

Proof. If \(q \) is added to the slice then by Lemma 5 there is a sequence of tuples \((n_i, T_i, \text{color}_i), i = 1, \ldots, n \) with \(n_1 = q \) that obey the properties of tuples
given in Lemma 5. We show that these properties imply that there is a threaded witness for \(q \). We have \(n_i \xrightarrow{e_i} n_{i+1} \), where \(e_i \in \{cd, dd, c, s, pi, po, id\} \). In order to show that this sequence forms a threaded witness, we need to show that for every thread \(\theta_i \), the subsequence of nodes \(n_{i}^1, \ldots, n_{i}^k \) belonging to thread \(\theta_i \) form a realizable path.

Let \(n_i \) and \(n_{i+1} \) be any two consecutive nodes added to the slice. We show inductively that if \(n_{i+1} \) forms a part of a threaded witness, then \(n_i \) also forms a threaded witness. Consider the different dependence edges from \(n_i \) to \(n_{i+1} \).

(1) case ‘pi’, ‘po’ or ‘cd’, ‘dd’ such that \(n_i \) and \(n_{i+1} \) belong to the same thread (i.e., \(\theta(n_i) == \theta(n_{i+1}) \)). (In the case of ‘pi’ and ‘po’, \(\theta(n_i) == \theta(n_{i+1}) \) is always true):

Let \(\mu_{i+1} \) be the set of TopolNumbers associated with \(n_{i+1} \). Then in the state tuple for \(n_{i+1} \), we have \(T_{i+1}[\theta(n_i)], \mu = \mu_{i+1} \). In the state tuple for \(n_i \), we have \(T_{i}[\theta(n_i)], \mu = \mu_i \) such that \(\mu_i = \text{RealizablePath}(n_i, n_{i+1}, \mu_{i+1}) \). By Lemma 5, \(\mu_i \neq \emptyset \). Then by Corollary 2 (Section A) there is a realizable path from \(n_i \) to \(n_{i+1} \) and hence there is a threaded witness for \(n_i \).

(2) case ‘id’ or ‘cd’, ‘dd’ such that \(n_i \) and \(n_{i+1} \) belong to different threads (i.e., \(\theta(n_i) \neq \theta(n_{i+1}) \)):

Let the last node visited by the algorithm in \(\theta(n_i) \) be some \(n' \). If \(n' \) is \(\perp \), then \(n_i \) is the first node in its thread and it obviously forms a realizable path in its thread. If \(n' \) is not \(\perp \), then in the state tuple associated with \(n_{i+1} \), we have \(T_{i+1}[\theta(n_i)], \mu = \mu_{i+1} \). In the state tuple associated with \(n_i \), we have \(T_{i}[\theta(n_i)], \mu = \mu_i \) such that \(\mu_i = \text{RealizablePath}(n_i, n', \mu') \). By Lemma 5 \(\mu_i \neq \emptyset \). Then by Corollary 2 there is a realizable path from \(n_i \) to \(n' \) and hence there is a threaded witness for \(n_i \).

(3) case ‘s’: In a threaded witness, no pair of adjacent nodes are related by the summary edges. So, in order to show the existence of threaded witness, we first replace every pair \(n_i, n_{i+1} \), that are related by a summary edge by a sequence of nodes that are related by ‘cd’, ‘dd’, ‘pi’ and ‘po’ edges alone. This is always possible thanks to the property of summary edges (Theorem 4). Also, by Definition 5 and Theorem 4 there is a transitive dependence from \(n_i \) to \(n_{i+1} \) composed of only ‘cd’, ‘dd’, ‘pi’, ‘po’ edges. Then we can apply case 1 of this proof to the sequence of nodes from \(n_i \) to \(n_{i+1} \) that have only ‘cd’, ‘dd’, ‘pi’, ‘po’ edges. Thus, there is a realizable path from \(n_i \) to \(n_{i+1} \) and the nodes belong to a threaded witness.

Thus, for any \(n_i \) added to the slice, there is a threaded witness in \(\theta(n_i) \). Hence, the theorem.

B.1 Correctness of the Context-Insensitive Algorithm

Let \(S'_p \) be the slice computed by the context-insensitive algorithm, then the correctness can be stated as

\[\text{Theorem 7. } S(p) \subseteq S'_p. \]

For the context-insensitive algorithm we have the following lemma:
Fig. 19. The context-sensitive interprocedural slicing algorithm with optimizations.

\textbf{LEMMA 8.} A tuple \((n_1, \text{color}_1)\) is added to the one of the lists \(w_0, w_1, \text{ or } w_2\), at some stage if and only if there exists a sequence of tuples \((n_i, \text{color}_i), \ i = 1, \ldots, n\) that is added to one of these lists where the tuples satisfy the following properties:

1. \textbf{For } \(i = n\)
 - \(n_n = p\)
 - \(\text{color}_n = \text{phase}1\).

2. \textbf{For } \(i = 1, \ldots, n-1, n > 1\)
 - \(n_i \rightarrow n_{i+1}, e_i \in \{cd, dd, c, s, pi, po, id\}\)
 - \(\text{color}_i \in \{\text{phase}1, \text{phase}2\}\)

3. \textbf{For } \(i = 1, \ldots, (n-1), \text{ one of the following holds}\)
 - \(e_i \in \{cd, dd, s\}, \text{ color}_i = \text{color}_{i+1}\)
 - \(e_i = po, \text{ color}_i \leq \text{color}_{i+1}\)
 - \(e_i \in \{pi, c\}, \text{ color}_i = \text{color}_{i+1} = \text{phase}1\)
 - \(e_i = id, \text{ color}_i = \text{phase}1\)
Fig. 20. The context-sensitive interprocedural slicing algorithm with optimizations—continued.

This is identical to Lemma 5 without the RealizablePath restriction. The proof of Lemma 8 is similar to the proof of Lemma 5 and the proof of Theorem 7 proceeds along the same lines as Theorem 5, using Lemma 8 instead of Lemma 5.

C. ALGORITHM FOR OPTIMIZED INTERPROCEDURAL SLICING OF CONCURRENT PROGRAMS

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their detailed comments on an earlier draft.
REFERENCES

