Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models

T. Kant *, C.S. Babu

Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

Abstract

The paper considers the elastic buckling of skew fibre-reinforced composite and sandwich plates subjected to thermal loads. To the best of the authors' knowledge, there is no paper in the open literature on this subject and the present paper attempts to fill this gap. Two shear deformable finite element models, one based on first-order shear deformation theory and the other based on higher-order shear deformation theory, are employed to obtain thermal buckling solutions. Extensive numerical results are presented for both thin and thick laminated composite plates with various skew angles, lamination parameters and boundary conditions. A few results for skew sandwiches are obtained for various geometric parameters and skew angles. Results presented, not available so far, could be useful to designers and researchers who may use them as benchmark values to validate their numerical techniques and software for similar problems.

Keywords: Buckling; Higher-order theory; Shear deformation; Skew plate; Skew laminates; Skew sandwiches; Thermal buckling

1. Introduction

Fibre-reinforced composite materials due to their high specific strength and stiffness are becoming increasingly used in many engineering applications, especially in the aerospace and ship building industries. It is well known that skew or oblique plates made of these materials are important structural components of ship hulls and swept wings of aeroplanes. Buckling is one of the primary modes of failure of these elements when they are subjected to membrane stresses caused by either thermal loads or mechanical loads or a combination of these loads. Thus the buckling strength of skew composite laminates is one of the factors governing their design and its accurate determination is of interest to designers.

Considerable research [1–4] has been published investigating the buckling response of skew composite laminates. In these investigations, numerical methods such as the finite element method, the Rayleigh–Ritz method, etc. are used as exact solutions cannot be obtained due to the use of a non-orthogonal coordinate system in the derivation of the governing differential equations. Reddy and Palaninathan [1] have employed a triangular finite element based on classical laminated plate theory. Jaunky et al. [2] and Wang [3] have used the Rayleigh–Ritz method incorporating first-order shear deformation effects. Very recently, Babu and Kant [4] have presented two C₀ shear deformable finite element formulations for the buckling analysis of skew laminated composite and sandwich panels. A 16-node bi-cubic Lagrange element is used in the formulations. In all these investigations, skew laminates subjected to only mechanical loads are considered. Surprisingly, in the case of skew composite laminated and sandwich plates subjected to thermal loads, there are virtually no papers in the open literature; although there are a few studies [5–7] on thermal buckling of isotropic skew plates.

The objective of this work is to fill this gap by presenting a study of the thermal buckling of skew laminated composite and sandwich plates. The two shear deformable finite element models presented by the authors [4] previously for mechanical buckling analyses are employed here for thermal buckling analyses. One of these models is based on Reissner–Mindlin first-order theory and the other is based on a higher-order theory developed by Kant and his fellow researchers [8–10]. The accuracy of the models is verified against the literature values for isotropic skew plates. New results are presented for skew laminated composite and sandwich plates using the standard material properties available in the literature.
2. Theoretical formulation

The two shear deformation theories considered for investigation in the present work are based on the assumption of the displacement fields in the following form:

(a) First-order shear deformation theory (FSDT), 5 degrees of freedom/node

\[
u(x, y, z) = u_0(x, y) + z\theta_y(x, y),
\]
\[
u(x, y, z) = v_0(x, y) - z\theta_x(x, y),
\]
\[
u(x, y, z) = w_0(x, y),
\]

(b) Higher-order shear deformation theory (HSDT), 9 degrees of freedom/node

\[
u(x, y, z) = u_0(x, y) + z\theta_y(x, y) + z^2 u_0''(x, y) + z^3 \theta_y''(x, y),
\]
\[
u(x, y, z) = v_0(x, y) - z\theta_x(x, y) + z^2 v_0''(x, y) - z^3 \theta_x''(x, y),
\]
\[
u(x, y, z) = w_0(x, y),
\]

where \(u, v, w\) define the displacements of any generic point \((x, y, z)\) in the plate space, \(u_0, v_0\) and \(w_0\) denote the displacements (Fig. 1) of a point \((x, y)\) on the middle plane, \(\theta_x\) and \(\theta_y\) are the rotations of normal to middle-plane about \(x\) and \(y\)-axes, respectively. The parameters \(u_0'', v_0'', \theta''_x\) and \(\theta''_y\) are higher-order terms in the Taylor series expansion and are also defined at the mid-surface.

Neglecting the transverse stress \((\sigma_z)\) and strain \((\varepsilon_z)\), the Duhamel–Neumann form of Hooke’s law for the \(L^h\) lamina in the laminate co-ordinates \((x, y, z)\) is written as

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy} \\
\tau_{xz} \\
\tau_{yz}
\end{bmatrix}
= Q
\begin{bmatrix}
Q_{11} & Q_{12} & Q_{13} & 0 & 0 \\
Q_{12} & Q_{22} & Q_{23} & 0 & 0 \\
Q_{13} & Q_{23} & Q_{33} & 0 & 0 \\
0 & 0 & 0 & Q_{44} & Q_{45} \\
0 & 0 & 0 & Q_{45} & Q_{55}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x - \alpha_x \Delta T \\
\varepsilon_y - \alpha_y \Delta T \\
\gamma_{xy} - \gamma_{xz} \Delta T \\
\gamma_{xz} - \gamma_{yz} \Delta T \\
\gamma_{yz}
\end{bmatrix}
\]

or in short form

\[
\sigma = Q(\varepsilon - \varepsilon_0)
\]

in which

\[
\sigma = \begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy} \\
\tau_{xz} \\
\tau_{yz}
\end{bmatrix}
\]

\[
\varepsilon = \begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy} \\
\gamma_{xz} \\
\gamma_{yz}
\end{bmatrix}
\]

\[
Q = \begin{bmatrix}
Q_{11} & Q_{12} & Q_{13} & 0 & 0 \\
Q_{12} & Q_{22} & Q_{23} & 0 & 0 \\
Q_{13} & Q_{23} & Q_{33} & 0 & 0 \\
0 & 0 & 0 & Q_{44} & Q_{45} \\
0 & 0 & 0 & Q_{45} & Q_{55}
\end{bmatrix}
\]

\[
\alpha = \begin{bmatrix}
\alpha_x \\
\alpha_y \\
\gamma_{xz} \\
\gamma_{yz}
\end{bmatrix}
\]

\[
\Delta T = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Fig. 1. The geometry of skew laminate.
where \(r^f_i \in \mathbb{M} \) and \(\mathbb{N} \) and \(\mathbb{M} \) and \(\mathbb{O} \), the stress resultants in Eqs. (11)–(13) are used to compute the geometric stiffness matrix which is subsequently used in Eq. (18) to determine the smallest eigenvalue, \(\lambda \) and the associated mode shape, \(\delta \mathbf{d} \). The critical temperature, \(T_{cr} \) of the plate is calculated using

\[T_{cr} = \lambda \Delta T. \]

2.1. Thermal buckling analysis

The calculation of the critical buckling temperature consists of two stages. For a specified rise in temperature \(\Delta T \), a linear static analysis (17) is carried out to determine the thermal stress resultants. These stress resultants are then used to compute the geometric stiffness matrix which is subsequently used in Eq. (18) to determine the smallest eigenvalue, \(\lambda \) and the associated mode shape, \(\delta \mathbf{d} \). The critical temperature, \(T_{cr} \) of the plate is calculated using

\[T_{cr} = \lambda \Delta T. \]

3. Numerical results and discussion

Computer programs have been developed, based on the foregoing finite element models, to solve a number of thermal buckling examples of skew composite laminated and sandwich plates. The programs can handle panels subjected to non-uniform temperature rise over the surface and through the thickness. However, in all the examples considered here, the temperature rise is assumed to be uniform. In general a 6 × 6 skew mesh of 16-node elements has been used in the computations except for the convergence study presented on isotropic plate. The selective integration scheme, namely \(4 \times 4 \) Gauss–Legendre for the membrane, flexure, membrane–flexural coupling and shear rigidity matrices, respectively. The components of the rigidity matrix are given in Appendix A.

Following the standard procedure of the finite element formulation and the transformation of the stiffness matrices and the load vector from global axes \(x - y \) to local axes \(x' - y' \) (Fig. 1) as explained in Ref. [4], the equilibrium and stability conditions are obtained as

\[\mathbf{K}_0 \delta \mathbf{d} = \mathbf{R}, \]

\[[\mathbf{K}_0 + \lambda \mathbf{K}_q] \delta \mathbf{d} = 0, \]

where \(\mathbf{K}_0, \mathbf{K}_q \) and \(\mathbf{R} \) are the linear stiffness matrix, the geometric stiffness matrix and the thermal load vector, respectively. \(\delta \mathbf{d} \) is the nodal displacement vector of the plate.
laminates. All of the laminates considered were assumed to have an aspect ratio of $a/b = 1$, though the general case $a \neq b$ may also be studied without any difficulty. In all of the FSDT model computations, a shear correction factor of $5/6$ was used.

Due to the lack of comparative results for skew composite laminated plates, the accuracy of the present formulations was evaluated only with respect to results for isotropic plates. Subsequently, some new results are presented for laminated composite and sandwich skew plates.

3.1. Isotropic skew plates

Critical buckling temperature values of clamped isotropic skew plates are given by Prabhu and Durvasula [7]. They used classical plate theory in conjunction with the Ritz method. To obtain the classical plate theory solution, a thin plate with $a/h = 1000$ is analysed here. The critical temperature values are expressed as $\frac{\beta}{h T_{cr}} = \frac{E h^3}{12(1 - \nu^2)}$. Poisson’s ratio, ν is 0.3. The results obtained with full integration (FI) and selective integration (SI) schemes are given in Table 1 for four skew angles, $\Psi = 0^\circ, 15^\circ, 30^\circ$ and 45°. For $\Psi = 45^\circ$, the results obtained with successive refined meshes are also presented. The results of the present models obtained with the SI scheme are almost identical with the results given in [7] and the difference between the two integration schemes is negligible. Thus, the results demonstrate that the 16-node element is less susceptible to shear locking even in a distorted mesh. It is noted that the element exhibits monotonic convergence and a 6×6 skew mesh is considered adequate for further analysis.

3.2. Composite skew laminates

Cross-ply and angle-ply laminates are considered. The lamination schemes used are: (i) symmetric cross-ply ($0^\circ/90^\circ/90^\circ/0^\circ$) and (ii) anti-symmetric angle-ply ($45^\circ/-45^\circ/\ldots$) with the number of layers, $N_L = 4$ and 10. Both thin and thick skew laminates with four different edge conditions are analysed. The edge conditions considered are: (i) all edges simply supported (SSSS), (ii) straight edges clamped and skewed edges simply supported (CSCS), (iii) straight edges simply supported and skewed edges clamped (SCSC) and (iv) all edges clamped (CCCC). The simply supported (SS2) and clamped boundary conditions used here are given in Ref. [4]. The skew angle, Ψ is varied from 0° to 45°. The material characteristics [12] of individual lamina used here are:

3.2. Composite skew laminates

Cross-ply and angle-ply laminates are considered. The lamination schemes used are: (i) symmetric cross-ply ($0^\circ/90^\circ/90^\circ/0^\circ$) and (ii) anti-symmetric angle-ply ($45^\circ/-45^\circ/\ldots$) with the number of layers, $N_L = 4$ and 10. Both thin and thick skew laminates with four different edge conditions are analysed. The edge conditions considered are: (i) all edges simply supported (SSSS), (ii) straight edges clamped and skewed edges simply supported (CSCS), (iii) straight edges simply supported and skewed edges clamped (SCSC) and (iv) all edges clamped (CCCC). The simply supported (SS2) and clamped boundary conditions used here are given in Ref. [4]. The skew angle, Ψ is varied from 0° to 45°. The material characteristics [12] of individual lamina used here are:
Table 3
Critical temperature parameter λ_T of anti-symmetric angle-ply $(45^\circ/-45^\circ)_{\ldots}$ skew laminates with various edge conditions $(a/h = 100) \ [6 \times 6 \text{ mesh}]$

<table>
<thead>
<tr>
<th>NL</th>
<th>Ψ</th>
<th>Theory</th>
<th>Edge conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSSS</td>
</tr>
<tr>
<td>4</td>
<td>0°</td>
<td>HSDT</td>
<td>0.1468</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1469</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>HSDT</td>
<td>0.1492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1494</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>HSDT</td>
<td>0.1649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1651</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>HSDT</td>
<td>0.2171</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.2174</td>
</tr>
<tr>
<td>10</td>
<td>0°</td>
<td>HSDT</td>
<td>0.1675</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1675</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>HSDT</td>
<td>0.1696</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1696</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>HSDT</td>
<td>0.1850</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1851</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>HSDT</td>
<td>0.2406</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.2407</td>
</tr>
</tbody>
</table>

Table 4
Critical temperature parameter λ_T of symmetric cross-ply $(0^\circ/90^\circ)_{\ldots}$ skew laminate with various edge conditions $(a/h = 10) \ [6 \times 6 \text{ mesh}]$

<table>
<thead>
<tr>
<th>Ψ</th>
<th>Theory</th>
<th>Edge conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SSSS</td>
</tr>
<tr>
<td>0°</td>
<td>HSDT</td>
<td>0.0757</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.0770</td>
</tr>
<tr>
<td>15°</td>
<td>HSDT</td>
<td>0.0767</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.0784</td>
</tr>
<tr>
<td>30°</td>
<td>HSDT</td>
<td>0.0821</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.0849</td>
</tr>
<tr>
<td>45°</td>
<td>HSDT</td>
<td>0.0985</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.1031</td>
</tr>
</tbody>
</table>

Table 5
Critical temperature parameter λ_T of anti-symmetric angle-ply $(45^\circ/-45^\circ)_{\ldots}$ skew laminates with various edge conditions $(a/h = 10) \ [6 \times 6 \text{ mesh}]$

<table>
<thead>
<tr>
<th>NL</th>
<th>Ψ</th>
<th>Theory</th>
<th>Edge conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSSS</td>
</tr>
<tr>
<td>4</td>
<td>0°</td>
<td>HSDT</td>
<td>0.1061</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1099</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>HSDT</td>
<td>0.1056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1098</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>HSDT</td>
<td>0.1116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1162</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>HSDT</td>
<td>0.1341</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1399</td>
</tr>
<tr>
<td>10</td>
<td>0°</td>
<td>HSDT</td>
<td>0.1208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1215</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>HSDT</td>
<td>0.1201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1209</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>HSDT</td>
<td>0.1256</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1265</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>HSDT</td>
<td>0.1497</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.1506</td>
</tr>
</tbody>
</table>
$E_1/E_2 = 15, E_3 = E_2, \quad G_{12}/E_2 = G_{13}/E_2 = 0.5000,$
$G_{23}/E_2 = 0.3356, \quad \nu_{12} = \nu_{13} = 0.3, \quad \nu_{23} = 0.49,$
$x_1/x_0 = 0.015, \quad x_2/x_0 = x_3/x_0 = 1.0,$

where x_0 is a normalisation factor for the coefficient of thermal expansion.

Tables 2 and 3 show the critical temperature parameter, $\lambda_T = x_0T_c$, for symmetric cross-ply ($0\degree/90\degree/90\degree/0\degree$) and anti-symmetric angle-ply ($45\degree/-45\degree/\ldots$) thin laminates, respectively. As expected, the results of the first-order and higher-order theories show good agreement for all the edge conditions and for all the skew angles considered.

Tables 4 and 5 show the critical temperature parameter for thick ($a/h = 10$) symmetric cross-ply ($0\degree/90\degree/90\degree/0\degree$) and anti-symmetric angle-ply ($45\degree/-45\degree/\ldots$) laminates, respectively. It is clear that for both cross- and angle-ply laminates, the first-order theory over-estimates the critical temperature and the difference between the two theories increases with increasing skew angle. The maximum difference between the two theories occurs with CCCC laminates when $\Psi = 45\degree$. The difference is about 4.7% in the cross-ply laminate and in the angle-ply laminate with $NL = 4$, the difference is about 6.7%. However, for the ten layered angle-ply laminate, the results of both theories are nearly the same with a maximum difference of about 1%. In general, the critical temperature of both the thin and thick laminates increases with skew angle. But the increase is more pronounced in thin laminates.

Figs. 2(a) and (b) show the effect of width-to-thickness ratio on the critical temperature of four-layered anti-symmetric angle-ply ($45\degree/-45\degree/45\degree/-45\degree$) skew laminate for SSSS and CCCC support conditions, respectively. The results obtained with HSDT analysis are used here. The critical temperature parameter decreases, i.e., the effect of transverse shear deformation increases, with increase in laminate thickness. The effect of transverse shear deformation is seen to increase with increase in the skew angle for both simply supported and clamped laminates, but the increase is more significant in clamped skew laminates. The effect of skew angle on critical temperature decreases with increase in thickness and for thick laminates with $a/h = 5$, the skew angle has negligible influence on critical temperature.

3.3. Skew sandwiches

Symmetric skew sandwich panels with cross-ply composite face sheets and a honeycomb core are considered here. The stacking sequence of the panel is $(0\degree/90\degree)/\text{core}/(90\degree/0\degree)_3$. The material characteristics [13] of the face sheets and core are:

Face sheets

$E_1/E_2 = 19, E_3 = E_2, \quad G_{12}/E_2 = 0.520,$
$G_{23}/E_2 = 0.338, \quad \nu_{12} = \nu_{13} = 0.32, \quad \nu_{23} = 0.49,$
$x_1/x_0 = 0.001, \quad x_2/x_0 = x_3/x_0 = 1.0.$

Core

$E_1/E_2^f = 3.2 \times 10^{-5}, \quad E_2/E_2^f = 2.9 \times 10^{-5}, \quad E_3/E_2^f = 0.4,$
$G_{12}/E_2^f = 2.4 \times 10^{-3}, \quad G_{13}/E_2^f = 7.9 \times 10^{-2},$
$G_{23}/E_2^f = 6.6 \times 10^{-2}, \quad \nu_{12} = 0.99,$
$\nu_{13} = \nu_{23} = 3 \times 10^{-5}, \quad x_1 = x_2 = x_3 = 1.36 x_0,$

where, E_1^f refers to the face sheets. Numerical results are presented in Table 6 for simply supported (SSSS) panels with $\Psi = 0\degree, 15\degree, 30\degree$ and $45\degree$. Two parameters, a/h and h_t/h, are varied, where h_t is thickness of each of the face sheets. For the validation of the present models, 3-D elasticity solution results [13,14] are also given for panels with $\Psi = 0\degree$. It may be noted that the HSDT results match well with the 3-D elasticity solution for all values of h_t/h, whereas FSDT over-estimates the buckling temperature by a significant margin at higher values of h_t/h. In the case of skew panels, for all values of Ψ and a/h ratios considered, the FSDT and HSDT results are almost identical for
panels with very thin face sheets \((h_t/h = 0.025)\). However, with increasing face sheet thickness, FSDT clearly over-estimates the critical temperature. The difference between FSDT and HSDT increases with skew angle. For moderately thick panels \((a/h = 20)\) with \(h_t/h = 0.15\), the difference increases from about 7.4% to 18.1% as \(\Psi \) increases from 0° to 45°. For a panel with \(a/h = 10\) and \(h_t/h = 0.15\), the difference increases from about 22.3% to 41.2% as the skew angle increases from 0° to 45°.

4. Conclusions

Two C⁰ isoparametric finite element formulations are used for thermal buckling analysis of skew fibre-reinforced laminated composite plates and composite sandwich plates. The accuracy of the present formulations is demonstrated for isotropic plates. New results are presented for laminated anisotropic and sandwich plates with various skew geometries.

The sensitivity of the critical buckling temperature to variations in skew angle, width-to-thickness ratio and boundary conditions is studied. In general the critical temperature values increase with increase in skew angle and the increase is more pronounced in thin laminates than in thick laminates. Through-thickness shear deformation is very large in thick laminates, and this effect increases with increase in the skew angle. The results show that the differences in predictions of FSDT and HSDT are small for composite laminates. However, for sandwich panels, in comparison to HSDT, FSDT over-estimates the critical temperature by a significant margin and the margin increases as the skew angle increases. The results presented here for both thin and thick laminates are the first of their kind and it is believed that they may serve as benchmark values for other designers and researchers to test the validity of their numerical techniques and software for similar kinds of problems.

Appendix A

The mid-surface strain vector, \(\mathbf{\bar{e}}\) is expressed in terms of linear \((\mathbf{\bar{e}}_0)\) and non-linear components \((\mathbf{\bar{e}}_L)\) as

\[
\mathbf{\bar{e}} = \mathbf{\bar{e}}_0 + \mathbf{\bar{e}}_L, \tag{A.1}
\]

where

\[
\mathbf{\bar{e}}_0 = \begin{bmatrix} \mathbf{\bar{e}}_{0x} & \mathbf{\bar{e}}_{0y} & \mathbf{\bar{e}}_{0z} & \mathbf{\bar{e}}_{0x} & \mathbf{\bar{e}}_{0y} & \mathbf{\bar{e}}_{0z} \end{bmatrix}^T,
\]

\[
\mathbf{\bar{e}}_L = \begin{bmatrix} \mathbf{\bar{e}}_{L0} & \mathbf{\bar{e}}_{L1} & \mathbf{\bar{e}}_{L2} & \mathbf{\bar{e}}_{L3} & \mathbf{\bar{e}}_{L4} & \mathbf{\bar{e}}_{L5} \end{bmatrix}^T. \tag{A.2}
\]

The components of linear strain vector \(\mathbf{\bar{e}}_0\) are:

Table 6

<table>
<thead>
<tr>
<th>(a/h)</th>
<th>(\Psi)</th>
<th>Theory</th>
<th>(h_t/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3-D Elas</td>
<td>0.025</td>
</tr>
<tr>
<td>20</td>
<td>0°</td>
<td>HSDT</td>
<td>0.0929</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.0928</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[13,14]</td>
<td>0.1000</td>
</tr>
<tr>
<td>15°</td>
<td>HSDT</td>
<td>0.1022</td>
<td>0.0979</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.1020</td>
<td>0.0950</td>
</tr>
<tr>
<td>30°</td>
<td>HSDT</td>
<td>0.1357</td>
<td>0.1013</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.1353</td>
<td>0.1245</td>
</tr>
<tr>
<td>45°</td>
<td>HSDT</td>
<td>0.2199</td>
<td>0.1855</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.2191</td>
<td>0.1903</td>
</tr>
<tr>
<td>10</td>
<td>0°</td>
<td>3-D Elas</td>
<td>0.3220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSDT</td>
<td>0.3231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSDT</td>
<td>0.3211</td>
</tr>
<tr>
<td>15°</td>
<td>HSDT</td>
<td>0.3485</td>
<td>0.2941</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.3462</td>
<td>0.3039</td>
</tr>
<tr>
<td>30°</td>
<td>HSDT</td>
<td>0.4384</td>
<td>0.3555</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.4349</td>
<td>0.3716</td>
</tr>
<tr>
<td>45°</td>
<td>HSDT</td>
<td>0.6252</td>
<td>0.4757</td>
</tr>
<tr>
<td></td>
<td>FSDT</td>
<td>0.6187</td>
<td>0.5064</td>
</tr>
</tbody>
</table>
The components of non-linear strain vector \(\tilde{\varepsilon}_L \) are:

\[
\begin{align*}
\tilde{\varepsilon}_{0L} &= \frac{1}{2} \left(\frac{\partial \theta_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \theta_0}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial x} \right)^2, \\
\tilde{\varepsilon}_{1L} &= \frac{1}{2} \left(\frac{\partial \psi_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \theta_0}{\partial y} \right)^2, \\
\tilde{\varepsilon}_{2L} &= \frac{1}{2} \left(\frac{\partial \theta_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \theta_0}{\partial y} \right)^2, \\
\end{align*}
\]

\[
\begin{align*}
\tilde{\varepsilon}_{3L} &= \frac{1}{2} \left(\frac{\partial \psi_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \theta_0}{\partial y} \right)^2, \\
\tilde{\varepsilon}_{4L} &= \frac{1}{2} \left(\frac{\partial \theta_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \theta_0}{\partial y} \right)^2, \\
\tilde{\varepsilon}_{5L} &= \frac{1}{2} \left(\frac{\partial \psi_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \theta_0}{\partial y} \right)^2, \\
\tilde{\varepsilon}_{6L} &= \frac{1}{2} \left(\frac{\partial \theta_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi_0}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \theta_0}{\partial y} \right)^2.
\end{align*}
\]
\[\phi_{ij}^{(3)} = 2u_0 \frac{\partial \theta_0^i}{\partial x} - 2v_0 \frac{\partial \theta_0^j}{\partial y} - 3\theta_x^i \frac{\partial v_0^j}{\partial x} + 3\theta_y^j \frac{\partial u_0^i}{\partial x}, \]
\[\phi_{ij}^{(4)} = 2u_0 \frac{\partial \theta_0^i}{\partial y} - 2v_0 \frac{\partial \theta_0^j}{\partial x} - 3\theta_x^j \frac{\partial v_0^i}{\partial y} + 3\theta_y^i \frac{\partial u_0^j}{\partial y}, \]
\[\psi_{il}^{(3)} = 3\theta_x^i \frac{\partial \theta_0^l}{\partial x} + 3\theta_y^l \frac{\partial \theta_0^i}{\partial y}, \quad \psi_{il}^{(4)} = 3\theta_x^l \frac{\partial \theta_0^i}{\partial y} + 3\theta_y^i \frac{\partial \theta_0^l}{\partial y}. \]

The rigidity matrices in Eq. (16) are

\[\mathbf{D}_M = \sum_{l=1}^{N_L} \begin{bmatrix} Q_{ij}H_1 & Q_{ij}H_3 & Q_{ij}H_5 & Q_{ij}H_7 & \text{Sym.} \\
 Q_{ij}H_3 & Q_{ij}H_5 & Q_{ij}H_7 & Q_{ij}H_9 & Q_{ij}H_{11} \end{bmatrix}, \]
\[\mathbf{D}_C = \sum_{l=1}^{N_L} \begin{bmatrix} Q_{ij}H_4 & Q_{ij}H_6 \\
 Q_{ij}H_6 & Q_{ij}H_{10} & Q_{ij}H_{12} \end{bmatrix}, \]
\[\mathbf{D}_B = \sum_{l=1}^{N_L} \begin{bmatrix} Q_{ij}H_5 & Q_{ij}H_7 \\
 Q_{ij}H_7 & Q_{ij}H_9 \end{bmatrix}, \]
\[\mathbf{D}_S = \sum_{l=1}^{N_L} \begin{bmatrix} Q_{lm}H_1 & Q_{lm}H_3 & Q_{lm}H_5 & Q_{lm}H_7 & Q_{lm}H_9 \\
 Q_{lm}H_3 & Q_{lm}H_5 & Q_{lm}H_7 & Q_{lm}H_9 & Q_{lm}H_{11} \end{bmatrix}, \]

where \(i, j = 1, 2, 3 \) and \(l, m = 4, 5 \)

\[H_i = \left(\frac{z_i^{(l)} - z_i^{(m)}}{l} \right). \]

References